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 1 Introduction to Regina

This chapter provides an introduction to Regina, an Open Source Rexx Interpreter distributed 
under the GNU General Library License.

 1.1 Purpose of this document
The purpose of this document is to provide an overview of the Rexx Language and the Regina  
implementation of the Rexx Language.  It is not intended as a definitive reference to Rexx; you 
should  really have a copy of the Rexx "bible";  The Rexx Language, by Mike Cowlishaw [TRL2].

 1.2 Implementation
The Regina Rexx Interpreter is implemented as a library suitable for linking into third-party 
applications.  Access to Regina from third-party applications is via the Regina API, which is 
consistent with the IBM's  Rexx  SAA API.  This API is implemented on most other Rexx 
interpreters.  

The library containing  Regina is available either as a static library or as a dynamically loadable 
library.  The only functional difference between the two libraries is that the ability to dynamically 
load Rexx external function packages via the built-in function; RxFuncAdd, is only available with 
the dynamically loadable library.

The Regina distribution also includes a front end to the Regina library, to enable the execution of 
Rexx programs directly from the command line.  The command line referred to here relates to the a 
Unix shell, an OS/2 or DOS command window or a Windows NT/9x command prompt.

On platforms where both a static and a dynamic executable exist, it should be noted that the ability 
to load and execute external functions via the RxFuncAdd function, is only available by running the
dynamic executable.
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 1.3 Ports of Regina
Regina has been ported to many operating systems.  The following table provides  implementation 
details of each of the ports of Regina.

Operating System Static
Library

Dynamic
Library

Dynamic
Library

ThreadSafe

Dynamic
Executable

Static
Executable

Linux libregina.a libregina.so Yes regina rexx

HP-UX libregina.a libregina.sl No regina rexx

AIX libregina.a libregina.a Yes regina rexx

Other Unix libregina.a libregina.so Maybe regina rexx

32-bit DOS 
(DJGPP)

(Uses DPMI 
memory manager)

libregina.a N/A No N/A rexx.exe

32-bit DOS (EMX)

(Uses VCPI memory
manager)

regina.a N/A No N/A rexx.exe

OS/2 (EMX) regina.a regina.dll
(regina.lib)

Yes regina.exe rexx.exe

OS/2 
(OpenWatcom)

rexx.lib regina.dll
(regina.lib)

No regina.exe rexx.exe

Windows 32bit 

Windows 64bit

rexx.lib regina.dll
(regina.lib)

Yes regina.exe rexx.exe

BeOS libregina.a libregina.so No regina rexx

AmigaOS libregina.a N/A No N/A rexx

EPOC32 N/A N/A No N/A rexx.exe

AtheOS/Syllable libregina.a libregina.so No regina rexx

QNX 4.2x rexx.lib N/A No N/A rexx

QNX 6.x libregina.a libregina.so Yes regina rexx

MacOS X libregina.a libregina.dylib No regina rexx

SkyOS libregina.a libregina.dll No regina.app rexx.app

 1.4 Executing Rexx programs with Regina
Rexx programs are generally executed by Regina from the command line in the following manner:

regina [switches] [program] [program parameters]
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where:
regina is the name of the Regina executable (see table above)
switches are optional switches. See the section below for an explanation of the 

switches currently supported by Regina
program the name of the Rexx program to be executed.  See the section 

External Rexx Programs, below,  for details on how Regina 
interprets this argument. If no program name is specified, Regina 
waits for Rexx commands to be typed in and will execute those 
commands when the appropriate end-of-file character (^D on Unix 
and ^Z on DOS, OS/2 and Windows) is typed.

program parameters any optional parameters to be passed to the Rexx program.

Rexx programs to be executed by Regina on Unix platforms can take advantage of a feature of 
Unix shell programs called magic numbers.  By having  the first line of a Rexx program consist of 
the special sequence of #! followed by the full file name of the Regina executable,  you can  invoke 
this program simply by typing the name of the Rexx program on the command line followed by any
parameters you wish to pass to the Rexx program.  The file name must also have the appropriate 
execute bit set for this to work.  As an example suppose your Rexx program, myprog, contained:

#!/usr/local/bin/regina
Parse Version ver
Say ver

When executing this program from the command line by typing myprog, the Unix shell program 
would execute the program /usr/local/bin/regina and pass the remainder of the lines in 
the file to this program via stdin.

The special processing done by Regina to find the file name in REGINA_MACROS and the file 
extension searching is ignored for the program to be run when using the magic number method of 
invocation, but is still done inside the program when using CALL.

 1.4.1 Switches

The following switches allow the user to control how Regina executes the supplied Rexx program.  
Switches are recognised by either a leading hyphen character; '-', followed immediately by a single 
alphabetic character, or the full switch name preceded by two hyphen characters.  Some switches 
allow for optional parameters.  These, too must follow the switch  without any intervening spaces.  
All switches and their optional parameters are case-sensitive. Single character switches that take no 
option can be combined. e.g. “-arp”

-t[trace char]
--trace[=trace char]

Turn on the specified tracing level.  The optional trace char indicates 
the tracing level to be used.  See the TRACE command later in this 
document for an explanation of each trace level.  Use of this switch 
will result in any TRACE commands in the program to be ignored. 
Default trace char is A.

-i[trace char]
--interactive[=trace char]

Same as –trace switch above but sets tracing to be interactive
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-a
--args

Without this switch, all command line parameters are passed to Regina
as a single argument. Specifying -a, ensures that the Rexx program 
invoked has access to the command line parameters as separate 
arguments, as passed from the command line interpreter. i.e. The BIF 
ARG() can return a value of other than 1 or 0. Also PARSE 
SOURCE will return SUBROUTINE instead of the normal 
COMMAND value.

-r
--restricted

Run Regina in restricted mode.  See the section on Regina Restricted 
Mode for more details.

-v[a|b|v|]
--version[=a|b|v]

Displays the version information for the executable run. The string 
displayed is the same that is returned by PARSE SOURCE followed 
by the processor architecture bits. The version string provides an 
indicator as to whether the Regina library is thread-safe or not. If the 
first word ends in“(MT)”,  then the library is thread-safe. This switch, 
executed by the static executable, will always result in 
no“(MT)”indicator.

Options:

a – displays location of Regina's ADDONS directory

b – number of bits Regina is complied with; eg 32 or 64

v – numeric version; eg 3.9.3

-l[locale]
--locale[=locale]

Indicates which national locale that Regina is to use for BIFs like 
TRANSLATE, LOWER, or UPPER. No validation is done on the 
specified locale. The affected behaviour is defined in Section 2; 
“Native Language Support”.
The locale is passed to the underlying C library, which resolves the 
describer in a system specific way. An omitted locale lets the system 
choose the current pre-selected locale for the user. This is the usual 
option a user would choose. "-l" without a locale, works best for 
most users who decided to use locale support. Error messages can be 
selected by another scheme using an environment variable, see Section
10.2;Native Language Support; this variable can be used to select a 
locale, too.
The text of the locale is equivalent to those of the environment 
variables LANG or LC_CTYPE or the value used in registries, etc.
Examples are en_US.ISO-8859-1 or English_USA.1252 for 
some systems.

-oOPTIONS
--options=OPTIONS

This switch specifies the values of OPTIONS to set.  This is a string of
words in the same format as the OPTIONS instruction.  This switch 
overwrites REGINA_OPTIONS Environment variable.

-p
--pause

This switch causes Regina to pause on exit.  This switch is useful if 
you run Rexx programs from a GUI file manager and want to see the 
output from that program before the console window closes.

-c Compile the specified program into a tokenised format. The only 
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--compile program parameters when using this switch is the filename for the 
tokenised program. i.e. regina -c program filename

-e
--execute

Execute the specified program from a tokenised format. program 
must be a file created by the -c switch. All other switches and program
parameters are allowed except -c.

 1.4.2 External Rexx programs

Regina searches for Rexx programs, using a combination of the  REGINA_MACROS 
environment variable, the PATH environment variable, the REGINA_SUFFIXES environment 
variable and the addition of filename extensions.  This rule applies to both external function calls 
within a Rexx program and the program specified on the command line.

First of all we process the environment variable REGINA_MACROS.  If no file is found we 
proceed with the current directory and then with the environment variable PATH. The semantics of 
the use of REGINA_MACROS and PATH are the same, and the search in the current directory is 
omitted for the superuser on Unix systems for security reasons. The current directory must be 
specified explicitly by the superuser. 

When processing an environment variable, the content is split into the different paths and each path 
is processed separately.  Note that the search algorithm to this point is ignored if the program name 
contains a file path specification. eg. if "CALL .\MYPROG" is called, then no searching of 
REGINA_MACROS or PATH is done; only the concatenation of suffixes is carried out. 

For each file name and path element, a concatenated file name is created. If a known file extension 
is part of the file name only this file is searched, otherwise the file name is extended by the 
extensions ""  (empty string), ".rexx", ".rex", ".cmd", and ".rx" in this order. The file name case is 
ignored on systems that ignore the character case for normal file operations like DOS, Windows, 
and OS/2. 

The first matching file terminates the whole algorithm and the found file is returned. 

The environment variable REGINA_SUFFIXES extends the list of known suffixes as specified 
above, and is inserted after the empty extension in the process. REGINA_SUFFIXES has to 
contain a space or comma separated list of extensions, a dot in front of each entry is allowed, 
e.g. ".macro,.mac,.regina" or "macro mac regina"
Note that it is planned to extend the list of known suffixes by ".rxc" in version 3.4 to allow for 
seamless integration of pre-compiled macros.

Example: Locating an external Rexx program for execution

 Assume you have a call to an external function, and it is coded as follows:

 Call myextfunc arg1, arg2

Assume also that the file myextfunc.cmd exists in the directory /opt/rexx/, and that 
PATH=/usr/bin:/opt/rexx, REGINA_MACROS is not set, and REGINA_SUFFIXES=.macro.
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The files that Regina will search for in order are:
./myextfunc
./myextfunc.macro
./myextfunc.rexx
./myextfunc.rex
./myextfunc.cmd
./myextfunc.rx

/usr/bin/myextfunc
/usr/bin/myextfunc.macro
/usr/bin/myextfunc.rexx
/usr/bin/myextfunc.rex
/usr/bin/myextfunc.cmd
/usr/bin/myextfunc.rx

/opt/rexx/myextfunc
/opt/rexx/myextfunc.macro
/opt/rexx/myextfunc.rexx
/opt/rexx/myextfunc.rex
/opt/rexx/myextfunc.cmd /* found!! terminate search*/
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 2 Rexx Language Constructs

In this chapter, the concept and syntax of Rexx  clauses are explained. At the end of the chapter 
there is a section describing how Regina differs from standard Rexx  as described in the first part 
of the chapter.

 2.1 Definitions
A program in the Rexx language consists of clauses, which are divided into four groups: null 
clauses, commands, assignments, and instructions. The three latter groups (commands, assignments,
and instructions) are collectively referred to as statements. This does not match the terminology in 
[TRL2], where "instruction" is equivalent to what is known here as "statement", and "keyword 
instruction" is equivalent to what is known here as "instruction".  However, I find the terminology 
used here simpler and less confusing.

Incidentally, the terminology used here matches  [DANEY].

A clause is defined as all non-clause-delimiters (i.e. blanks and tokens) up to and including a clause 
delimiter. A token delimiter can be:

 An end-of-line, unless it lies within a comment, or the last token on a line is the line 
continuation character; comma. An end-of-line within a constant string is considered a syntax 
error {6}.

 A semicolon character that is not within a comment or constant string.
 A colon character, provided that the sequence of tokens leading up to it consists of a single 

symbol and whitespace. If a sequence of two symbol tokens is followed by a colon, then this 
implies SYNTAX condition {20}.

Some systems have the ability to store a text file having a last line unterminated by an end-of-line 
character sequence. In general, this applies to systems that use an explicit end-of-line character 
sequence to denote end-of-lines, e.g. Unix and MS-DOS systems. Under these systems, if the last 
line is unterminated, it will strictly speaking not be a clause, since a clause must include its 
terminating clause delimiter.  However, some interpreters are likely to regard the end-of-file as a 
clause delimiter too. The functionality of INTERPRET gives some weight to this interpretation. But
other systems may ignore that last, unterminated line, or maybe issue a syntax error. (However, 
there is no SYNTAX condition number adequately covering this situation.

Example: Binary transferring files

Suppose a Rexx program is stored on an MS-DOS machine. Then, an end-of-line sequence is 
marked in the file as the two characters carriage return and newline. If this file is transferred to a 
Unix system, then only newline marks the end-of-line. For this to work, the file must be transferred 
as a text file. If it is (incorrectly) transferred as a binary file, the result is that on the Unix system, 
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each line seems to contain a trailing carriage return character. In an editor, it might look like this:

 say 'hello world'^M
 say 'that"s it'^M

This will probably raise SYNTAX condition {13}.

 2.1.1 Tokens

The fundamental building block of a Rexx clause is a token. Tokens can be split into a number of 
different types; Literal Strings, Hexadecimal Strings, Binary Strings, Symbols, Operators and 
Special Characters.

Literal String
Any characters enclosed in single or double quotes is treated as a literal string; no interpretation of 
the contents is done. A literal string with no characters (ie two adjacent single or double quotes) is 
the null string. To include a single or double quote inside a literal string, either use the other quote 
character as the string delimiter or specify two adjacent quote characters to indicate a single, 
embedded quote.

Examples: Literal String

'def'
"Mary"
"I'm a string"
'I''m a "valid" string'
''  → null string

Hexadecimal String
Any hexadecimal (0-9, a-f, A-F) characters, grouped in pairs,  enclosed in single or double quotes 
and immediately followed by 'x' or 'X' is interpreted as a hexadecimal string. (The "X" is outside of 
the quotes). If the first group has an odd number of characters, a zero is prepended.

Examples: Hexadecimal String

'0def'x
"01 02 03"X
'123 45'x  same as '01 23 45'x→

Binary String
Any binary (0 or 1) characters, grouped in fours,  enclosed in single or double quotes and 
immediately followed by 'b' or 'B' is interpreted as a binary string. (The "B" is outside of the 
quotes). If the first group has an odd number of characters, a zero is prepended. If the number of 
groups is an odd number, a group of 4 zeros (0000) is prepended.

Examples: Binary String

'11011101'b
"1111 0101 0001 1000"B
'111 0101 1010'b  same as '0000 0111 0101 1010'b→
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Symbol
A symbol contains a number of characters in the set of A-Z, a-z, 0-9 and other special characters; 
"._!?$#@". Lower case characters are converted to upper case before being used by the interpreter.

Examples: Symbol

joe
a.Br.3
@xyz!

Operators
The full list and definition of Operators are specified in section 2.5 Operators.

Special Characters
The characters in the table below have special significance in Rexx's syntax. They also delimit 
tokens.

: Identifies the termination of a label

; Indicates the end of a clause

( Opening character for precedence grouping. Also used to specify the start of 
a group of arguments to a function call.

) Closing character for precedence grouping. Also used to specify the end of a
group of arguments to a function call.

, Line continuation character

 2.2 Null clauses
Null clauses are clauses that consist of only whitespace, or comments, or both; in addition to the 
terminating clause delimiter.  These clauses are ignored when interpreting the code, except for one 
situation: null clauses containing at least one comment is traced when appropriate.  Null clauses not 
containing any comments are ignored in every respect.

Example: Tracing comments

The tracing of comments may be a major problem, depending on the context. There are basically 
two strategies for large comments: either box multiple lines as a single comment, or make the text 
on each line an independent comment, as shown below:
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trace all

/*
  This is a single, large comment, which spans multiple
  lines.
  Such comments are often used at the start of a subroutine
  or similar, in order to describe both the interface to and
  the functionality of the function.
*/

/* This is also a large comment, but it is written as   */
/* multiple comments, each on its own line. Thus, these */
/* are several clauses while the comment above is a     */
/* single comment.                                      */

-- These lines also consist of multiple comments, and thus
-- multiple clauses. This form of comment was introduced
-- in Regina 3.4

During tracing, the first of these will be displayed as one large comment, and during interactive 
tracing, it will only pause once. The second will be displayed as multiple lines, and will make 
several pauses during interactive tracing. An interpreter may solve this situation in several ways, the
main objective must be to display the comments nicely the to programmer debugging the code.  
Preferably, the code is shown in a fashion that resembles how it is entered in the file.

If a label is multiple defined, the first definition is used and the rest are ignored. Multiple defined 
labels is not an SYNTAX condition.

A null clause is not a statement. In some situations, like after the THEN subclause, only a statement 
is expected. If a null clause is provided, then it is ignored, and the next statement is used instead.

Consider the following code:

parse pull foo 

if foo=2 then 
    say 'foo is not 2' 
else
    /* do nothing */
say 'that"s it'

This will not work the way indentation indicates, since the comment in this example is not a 
statement. Thus, the ELSE reads beyond the comment, and connects to the SAY instruction which 
becomes the ELSE part. (That what probably not what the programmer intended.)  This code will 
say that's it, only when foo is different from 2.  A separate instruction, NOP has been 
provided in order to fill the need that was inadequately attempted filled by the comment in the code 
fragment above.
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Example: Trailing comments

The effect that comments are not statements can be exploited when documenting the program, and 
simultaneously making the program faster. Consider the following two loops:

sum = 0
do i=1 to 10
/* sum 1 2 3 ... 8 9 10 */

sum = sum + i
end

sum = 0
do i=1 to 10

sum = sum + i   /* sum 1 2 3 ... 8 9 10 */
end

In the first loop, there are two clauses, while the second loop contains only one clause, because the 
comment is appended to an already existing clause. During execution, the interpreter has to spend 
time ignoring the null clause in the first loop, while the second loop avoids this problem (assuming 
tracing is not enabled).  Thus, the second loop is faster; although only insignificantly faster for 
small loops. Of course, the comment could have been taken out of the loop, which would be equally
fast to the second version above.

 2.3 Commands

 2.3.1 Assignments

Assignments are clauses where the first token is a symbol and the second token is the equal sign 
(=). This definition opens for some curious effects, consider the following clauses:

a == b
This is not a command, but an assignment of the expression = b to the variable a. Of 
course, the expression is illegal (=b) and will trigger a SYNTAX condition for syntax error 
{35}. TRL2 defines the operator == as consisting of two tokens. Thus, in the first of these 
examples, the second token is =, the third token is also =, while the fourth token is b.

3 = 5
This is an assignment of the value 5 to the symbol 3, but since this is not a variable symbol, 
this is an illegal assignment, and will trigger the SYNTAX condition for syntax error {31}.

"hello" = foo
This is not an invalid assignment, since the first token in the clause is not a symbol. Instead, 
this becomes a command.

arg =(foo) bar
The fourth statement is a valid assignment, which will space-concatenate the two variable 
symbols foo and bar, and assign the result to the variable symbol arg. It is specifically 
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not an ARG instruction, even though it might look like one. If you need an ARG instruction 
which template starts with an absolute indirect positional pattern, use the PARSE UPPER 
ARG instruction instead, or prepend a dot in front of the template.

An assignment can assign a value to a simple variable, a stem variable or a compound variable. 
When assigning to a stem variable, all possible variable symbols having that stem are assigned the 
value.  Note specifically that this is not like setting a default, it is a one time multiple assignment.

Example: Multiple assignment

The difference between Rexx's multiple assignment and a default value can be seen from the 
following code:

foo. = 'bar'
foo.1 = 'baz'
drop foo.1
say foo.1        /* says "FOO.1" */

Here, the SAY instruction writes out FOO.1, not bar.  During the DROP instruction, the variable 
FOO.1 regains its original, uninitialized value FOO.1, not the value of its stem variable FOO., i.e. 
bar, because stem assignments does not set up a default.

Example: Emulating a default value

If you want to set the compound variable to the value of its stem variable, if the stem is initialized, 
then you may use the following code:

if (symbol('foo.')) then
foo.1 = foo.

else
drop foo.1

In this example, the FOO.1 variable is set to the value of its stem if the stem currently is assigned a 
value. Else, the FOO.1 variable is dropped.

However, this is probably not exactly the same, since the internal storage of the computer is likely 
to store variables like FOO.2 and FOO.3 only implicitly (after all, it can not explicitly store every 
compound having FOO. as stem). After the assignment of the value of FOO. to FOO.1, the FOO.1
compound variable is likely to be explicitly stored in the interpreter.

There is no way you can discover the difference, but the effects are often that more memory is used,
and some functionality that dumps all variables may dump FOO.1 but not FOO.2 (which is 
inconsistent). See section RexxVariablePool.

Example: Space considerations

Even more strange are the effects of the following short example:

22



foo. = 'bar'
drop foo.1

Although apparently very simple, there is no way that an interpreter can release all memory 
referring to FOO.1. After all, FOO.1 has a different value than FOO.2, FOO.3, etc., so the 
interpreter must store information that tells it that FOO.1 has the uninitialized value.

These considerations may seem like nit-picking, but they will matter if you drop lots of compound 
variables for a stem which has previously received a value. Some programming idioms do this, so 
be aware. If you can do without assigning to the stem variable, then it is possible for the interpreter 
to regain all memory used for that stem's compound variables.

 2.4 Instructions
In this section, all instructions in standard Rexx are described.

Extensions are listed later in this chapter.

First some notes on the terminology. What is called an instruction in this document is equivalent to 
a "unit" of clauses. That is, each instruction can consist of one or more clauses. For instance, the 
SAY instruction is always a single instruction, but the IF instruction is a multi-clause instruction. 
Consider the following script, where each clause has been boxed:

if a=b then
say 'hello'

else
say 'bye'

Further, the THEN or ELSE parts of this instruction might consist of a DO/END pair, in which case 
the IF instruction might consists of an virtually unlimited number of clauses.

Then, some notes on the syntax diagrams used in the following descriptions of the instructions. The 
rules applying to these diagrams can be listed as:

 Anything written in courier font in the syntax diagrams indicates that it should occur as-is in 
the Rexx program. Whenever something is written in italic font, it means that the term should 
be substituted for another value, expression, or terms.

 Anything contained within matching pairs of square brackets ([...]) are optional, and may be left
out.

 Whenever a pair of curly braces is used, it contains two or more subclauses that are separated by
the vertical bar (|). It means that the curly braces will be substituted for one of the subclauses it 
contains.

 Whenever the ellipsis (...) is used, it indicates that the immediately preceding subclauses may be
repeated zero or more times. The scope of the ellipsis is limited to the contents of a set of square
brackets or curly braces, if it occurs there.

 Whenever the vertical bar | is used in any of the syntax diagrams, it means that either the term 
to the left, or the term to the right can be used, but not both, and at least one of the must be used.
This "operator" is associative (can be used in sequence), and it has lower priority than the square
brackets (the scope of the vertical bar located within a pair of square brackets or curly braces is 
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limited to the text within those square brackets or curly braces.
 Whenever a semicolon (;) is used in the syntax diagram, it indicates that a clause separator 

must be present at the point. It may either be a semicolon character, or an end-of-line.
 Whenever the syntax diagram is spread out over more lines, it means  that any of the lines can 

be used, but that the individual lines are mutually exclusive. Consider the syntax:

SAY symbol
string

This is equivalent to the syntax:

SAY [symbol | string ]

 Because in the first of these two syntaxes, the SAY part may be continued at either line.
 Sometimes the syntax of an instruction is so complex that parts of the syntax has been extracted,

and is shown below in its expanded state. The following is an example of how this looks:

SAY something TO someone

something : = HI
HELLO
BYE

someone : = THE BOSS
YOUR NEIGHBOR

You can generally identify these situations by the fact that they comes a bit below the real 
syntax diagram, and that they contains a colon character after the name of the term to be 
expanded.

In the syntax diagrams, some generic names have been used for the various parts, in order to 
indicate common attributes for the term.  For instance, whenever a term in the syntax diagrams is 
called expr, it means that any valid Rexx expression may occur instead of that term. The most 
common such names are:

condition
Indicates that the subclause can be any of the names of the conditions, e.g. SYNTAX, 
NOVALUE, HALT, etc.

expr
Indicates that the subclause can be any valid Rexx expression, and will in general be 
evaluated as normal during execution.

statement
Indicates that extra clauses may be inserted into the instruction, and that exactly one of them
must be a true statement.

string
Indicates that the subclause is a constant string, i.e. either enclosed by single quotes ('...') or 
double quotes ("...").
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symbol
Indicates that the subclause is a single symbol. In general, whenever symbol is used as the 
name for a subclause, it means that the symbol will not automatically be expanded to the 
value of the symbol. But instead, some operation is performed on the name of the symbol.

template
Indicates that the subclause is a parsing template. The exact syntax of this is explained in a 
chapter on tracing, to be written later.

In addition to this, variants may also exist. These variants will have an extra letter or number 
appended to the name of the subclause, and is used for differing between two or more subclauses 
having the same "type" in one syntax diagram. In the case of other names for the subclauses, these 
are explained in the description of the instruction.

 2.4.1 The ADDRESS Instruction
ADDRESS [ environment  [ command ] [ redirection ] ] ;

[ [ VALUE ] expr [ redirection ] ] ;

redirection : = WITH input_redir [output_redir] [error_redir]
WITH input_redir [error_redir] [output_redir]
WITH output_redir [input_redir] [error_redir]
WITH output_redir [error_redir] [input_redir]
WITH error_redir [input_redir] [output_redir]
WITH error_redir [output_redir] [input_redir]

input_redir : = INPUT NORMAL
INPUT [ NOEOL ] io

output_redir : = OUTPUT NORMAL
OUTPUT [ APPEND | REPLACE ] io

error_redir : = ERROR NORMAL
ERROR [ APPEND | REPLACE ] io

io : = { STREAM | STEM | LIFO | FIFO } symbol
{ STREAM | LIFO | FIFO } string

We will discuss redirection later.

The ADDRESS instruction controls where commands to an external environment are sent.  If both 
environment and command are specified, the given command will be executed in the given 
environment. The effect is the same as issuing an expression to be executed as a command (see 
section Commands), except that the environment in which it is to be executed can be explicitly 
specified in the ADDRESS clause. In this case, the special variable RC will be set as usual, and the 
ERROR or FAILURE conditions might be raised, as for normal commands. Starting with Regina 3.0
the special variables .RC and .RS are set too, according to the ANSI standard.

In other words: All normal commands are ADDRESS statements with a suppressed  keyword and 
environment.
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The environment term must be a symbol or a literal string. If it is a symbol, its "name" is used, i.e. it
is not tail substituted or swapped for a variable value. The command and expression terms can be 
any Rexx expression. eg.

SYSTEM='PATH'
ADDRESS SYSTEM "echo Hello"

is equivalent to a plain

ADDRESS SYSTEM "echo Hello"
or

ADDRESS "SYSTEM" "echo Hello"

for the external echo command.
A symbol specified as an environment name isn't case-sensitive, whereas a string must match the 
case. Built-in environments are always uppercased.

Rexx maintains a list of environments, the size of this list is at least two. If you select a new 
environment, it will be put in the front of this list. Note that if command is specified, the contents of
the environment stack is not changed. If you omit command, environment will always be put in the 
front of the list of environments.  Regina has an infinite list and never pushes out any entry. 
Possible values are listed below. If you supply a command with the ADDRESS statement, the 
environment is interpreted as a temporary change for just this command.

What happens if you specify an environment that is already in the list, is not completely defined. 
Strictly speaking, you should end up with both entries in the list pointing to the same environment, 
but some implementations will probably handle this by reordering the list, leaving the selected 
environment in the front. This is Regina's behavior. Every environment exists only once. The 
redirection command below always changes the behavior of one -- the given -- environment.  You 
can imagine a set of playing cards in your hand. The operation is to draw one card by name and put 
it to the front.

If you do not specify any subkeywords or parameters to ADDRESS, the effect is to swap the two 
first entries in the list of environments. Consequently, executing ADDRESS multiple times will 
toggle between two environments.

The second syntax form of ADDRESS is a special case of the first form with command omitted. If 
the first token after ADDRESS is VALUE, then the rest of the clause is taken to be an expression, 
naming the environment which is to be made the current environment. Using VALUE makes it 
possible to circumvent the restriction that the name of the new environment must be a symbol or 
literal string. However, you can not combine both VALUE and command in a single clause.

Example: Examples of the ADDRESS instruction
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Let's look at some examples, they can sometimes be combined with a redirection:

ADDRESS COMMAND

ADDRESS SYSTEM 'copy' fromfile tofile

ADDRESS system

ADDRESS VALUE newenv

ADDRESS

ADDRESS (oldenv)

The first of these sets the environment COMMAND as the current environment.

The second performs the command 'copy' in the environment SYSTEM, using the values of the 
symbols fromfile and tofile as parameters.  Note that this will not set SYSTEM as the current
environment. 

The third example sets SYSTEM as the current environment (it will be automatically converted to 
upper case). 

The fourth example sets as the current environment the contents of the symbol newenv, pushing 
SYSTEM down one level in the stack. 

The fifth clause swaps the two uppermost entries on the stack; and SYSTEM ends up at the top 
pushing the environment specfied in newenv below it.  

The sixth clause is equivalent to the fourth example, but is not allowed by ANSI. Since Regina 3.0 
this style is deprecated and can't be used if OPTIONS STRICT_ANSI is in effect. Again, avoid 
this kind of ADDRESS statement style, and use the VALUE version instead.

Example: The VALUE subkeyword

Let us look a bit closer at the last example. Note the differences between the two clauses:

ADDRESS ENV

ADDRESS VALUE ENV

The first of these sets the current default environment to ENV, while the second sets it to the value 
of the symbol ENV. 

If you are still confused, don't Panic; the syntax of ADDRESS is somewhat bizarre, and you should 
not put too much effort into learning all aspects of it. Just make sure that you understand how to use
it in simple situations. Chances are that you will not have use for its more complicated variants for 
quite some time.
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Then, what names are legal as environments?  Well, that is implementation-specific, but some 
names seems to be in common use. The name COMMAND is sometimes used to refer to an 
environment that sends the command to the operating system.  Likewise, the name of the operating 
system is often used for this (CMS, UNIX, etc.).  You have to consult the implementation specific 
documentation for more information about this. Actually, there is not really any restrictions on what
constitutes a legal environment name (even the nullstring is legal). Some interpreters will allow you
to select anything as the current environment; and if it is an illegal name, the interpreter will 
complain only when the environment is actually used.  Other implementations may not allow you to
select an invalid environment name at all.

Regina allows every name as  an environment  name. Regina gives an error message about wrong 
names only when the name is used. The error string looks somewhat strange if Regina is used as a 
separate program, since the extension of the environment name space is only useful when running 
as part of a program which extends the standard names.

Regina uses three kinds of environments. Some have alias names. The environment names are:

SYSTEM
alias OS2ENVIRONMENT
alias ENVIRONMENT

This is the default environment which is selected at startup. The standard operating system 
command line interpreter will be loaded to execute the commands. You can use the built-in 
commands of the command line interpreter, often called shell, or any other program which 
the command line interpreter can find and load.

COMMAND
alias CMD
alias PATH

This environment loads the named program directly. You may supply a path if this is needed 
for the current operating system to load the program, otherwise Regina uses the standard 
operating system search rules for programs. This is done by searching through the items of 
the PATH system-environment variable in most operation systems. You can't use built-in 
shell functionality like system redirections like you can with SYSTEM. Regina's 
redirections are more powerful and work in either environment.

REXX
alias REGINA

This environment uses a new instance of the Regina interpreter program to execute a 
program. The program has to be a Rexx script. This environment has several advantages. 
The output of a script can be redirected, the process is independent and a risk of a crash is 
minimized when playing with external libraries, finally, Regina itself tries to find the 
correct Rexx interpreter by itself and does everything to create a new incarnation of 
Regina.

The definition of Rexx says nothing about which environment is preselected when you invoke the 
interpreter, although TRL defines that one environment is automatically preselected when starting 
up a Rexx script. Note that there is no NONE environment in standard Rexx, i.e. an environment 
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that ignores commands, but some interpreters implement the TRACE setting ??? to accomplish this. 
Regina uses the environment SYSTEM as the preselected environment as mentioned above. More 
implementation specific details can be found in the section implementation specific documentation 
for Regina.

The list of environments will be saved across subroutine calls; so the effect of any ADDRESS 
clauses in a subroutine will cease upon return from the subroutine.

ADDRESS Redirections

ANSI defines redirections for the ADDRESS statement. This feature has been missing from Regina 
until version 3.0; although you have had the chance to redirect input and output by using LIFO> 
and >FIFO modifiers on command strings.

These command modifiers still exist and have a higher precedence than the ANSI defined 
redirections. Note, that LIFO and FIFO can be used by the newer redirection system. But, first of 
all, some examples show the usage of ADDRESS redirections.

ADDRESS SYSTEM "sort" WITH INPUT STEM names. OUTPUT STEM 
names.

ADDRESS SYSTEM "myprog" WITH INPUT STEM somefood. OUTPUT 
STREAM 'prg.out' ERROR STEM oops.

ADDRESS PATH WITH INPUT FIFO '' OUTPUT NORMAL

ADDRESS SYSTEM WITH INPUT FIFO '' OUTPUT FIFO '' ERROR NORMAL

ADDRESS SYSTEM "fgrep 'bongo'" WITH INPUT STREAM 'feeder'

ADDRESS SYSTEM "sha256sum" WITH INPUT NOEOL FIFO ''

The first command instructs the default command line interpreter to call the program called sort. 
The input for the command is read from the stem names. (note the trailing period) and the output is 
sent back to the same stem variable after the command terminates. Thus, bothering about the 
implementation of a fast sort algorithm for a stem is as simple as calling a program which can 
actually do the sort.

A program called myprog is called in the second case. The input is fetched from the stem somefood. 
(again note the trailing period), and the standard output of the program is redirected to the stream 
called prg.out. Any generated error messages via the standard error stream are redirected to the stem
called oops.

In the third example, the redirection behavior of the environment PATH is changed for all future 
uses. The input for all commands addressed to this environment is fetched from the standard stack 
in FIFO order. After each call the stack will be flushed. The output is sent to the default output 
stream, which is the current console in most cases. The behavior for error messages is not changed.
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The fourth example allows pipes between commands in the environment; SYSTEM for all future 
uses. The input is fetched from the default stack and sent to the default stack after each command. 
The stack itself is flushed in between. Each executed program will write to something which is the 
input to the next called command. The error redirection is set or set back to the initial behavior of 
writing to the standard error stream.

The fifth example relates to the fourth. The default stack has to be filled with something initially. 
This is done by the redirection to the stream “feeder” while writing the output of the fgrep 
command to the default FIFO as declared in example four. After this, a single line with a simple 
sort command will sort the output of fgrep and place it in the default stack. You can fetch the final 
output of your pipe cascade by reading the stack contents. This statement overwrites some of the 
rules of the fourth example temporarily.

The sixth example highlights the fact that when the INPUT comes from the stack or a stem, Regina
by default appends an End-Of-Line (EOL) to each item in the stack or stem before passing it to the 
command. This default behaviour is fine when the input data is to be treated as lines, but not when 
the data passed to the command must be unmodified. When INPUT comes from a stream, or when 
the NOEOL flag is set, the INPUT is not modified.

You can see the powerful possibilities of the redirection command. The disadvantage is the loss of a
direct overview of what happens after a permanent redirection command has executed.

Its now the time to show you all rules and semantics of the redirection.

Rules for the redirection by the keyword WITH of the ADDRESS statement:

• Every environment has its own default redirection set.
• Every redirection set consists of three independent redirection elements; standard input (INPUT),

standard output (OUTPUT) and standard error (ERROR). Users with some experiences with Unix,
DOS & Windows or OS/2 may remember the redirection commands of the command line 
interpreter which can redirect each of the streams, too. This is nearly the same.

• Each redirection element starts with the program-startup streams given to Rexx when invoking 
the interpreter. These can be reset to the startup default by specifying the argument NORMAL for 
each redirection element.

• The sequence of the redirection elements is irrelevant. 
• You can specify each redirection element only once per statement.
• Redirections can be intermixed. This means you can let both the OUTPUT and the ERROR 

redirection point to the same "thing". The data from the different channels will be put to the 
assigned "thing" as they arrive. ANSI's point of view isn't very clear at this point. They state to 
keep the output different for files and put them together after the called program finished while 
the data shall be mixed at once when using stems.
Regina always mixes the fetched data at once if possible.

• Redirections from and to the same source/destination try to keep the data consistent. If the 
INPUT/OUTPUT pair or the INPUT/ERROR pair points to the same destination, the content of 
the input or output channel is buffered so that writing to the output won't overwrite the input.

• A redirection element is entered by its name (e.g. INPUT), a redirection processor (e.g. STREAM)
and a destination symbol (e.g. OUT_FN) following the rules to the redirection processor. This 
means that you have to enter a dot after a symbol name for a stem, or any symbol for the rest of 
the processors, in which case the content of the symbol is used as for normal variables.

• Both OUTPUT and ERROR streams can replace or append the data to the destination. Simply 
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append either APPEND or REPLACE immediately after the OUTPUT or ERROR keywords. 
REPLACE is the default.

• The destination is checked or cleared prior to the execution of the command.
• ANSI defines two redirection processors: STEM and STREAM. The processors LIFO and FIFO 

are allowed extensions to the standard.
• The processor STEM uses the content of the symbol destination.0 to access the count of the 

currently accessible lines. destination is the given destination name, of course. destination.0 must
be filled with a whole, non-negative number in terms of the DATATYPE built-in function.  Each 
of n lines can be addressed by appending the whole numbers one to n to the stem. Example: 
STEM foo. is given, FOO.0 contains 3. This indicates three content lines. They are the contents of
the symbols FOO.1 and FOO.2 and FOO.3 .

• The processor STREAM uses the content of the symbol destination to use a stream as known in 
the STREAM built-in function. The usage is nearly equivalent to the commands LINEIN 
destination or LINEOUT destination for accessing the contents of the file. An empty variable 
(content set to the empty string) as the content of the destination is allowed and indicates the 
default input, output or error streams given to the Rexx program. This is equivalent to the 
NORMAL keyword.

• The processor LIFO uses the content of the symbol destination as a queue name. New lines are 
pushed in last-in, first-out order to the queue. An empty destination string is allowed and 
describes the default queue. Lines are fetched from the queue if this processor is used for the 
INPUT stream.

• The processor FIFO uses the content of the symbol destination as a queue name. New lines are 
pushed in first-in, first-out order to the queue. An empty destination string is allowed and 
describes the default queue. Lines are fetched from the queue if this processor is used for the 
INPUT stream.

• On INPUT, all the data in the input stream is read up to either the end of the input data or until 
the called process terminates. The latter one may be determined after feeding up the input stream 
of the called process with unused data. Thus, there is no way to say if data is used or not. This 
isn't a problem with STEMs. But all file related sequential access objects including LIFOs and 
FIFOs may have lost data between two calls. Imagine an input file (STREAM) with three lines:

One line
DELIMITER
Second line

and furthermore two processes p1 and p2 called WITH INPUT STREAM f with f containing the
three lines above. p1 reads lines up until a line containing DELIMITER and p2 processes the 
rest. It is very likely that the second process won't fetch any line because the stream may be 
processed by Rexx, and Rexx may has put one or more lines ahead into the feeder pipe to the 
process. This might or might not happen. It is implementation dependent and Regina shows this 
behavior. The input object is checked for existence and if it is properly set up before the command
is started.
In short: INPUT may or may not use the entire input.

• Both OUTPUT and ERROR objects are checked for being properly set up just before the command
starts. REPLACE is implemented as a deletion just before the command starts. Note that ANSI 
doesn't force STEM lines to be dropped in case of a replacement. A big stem with thousands of 
lines will still exist after a replacement operation if the called command doesn't produce any 
output. Just destination.0 is set to 0.
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The redirection of commands is a mystery to many people and it will continue be. You can thank all 
the people who designed stacks, queues, pipelines and all the little helper utilities of a witch's 
kitchen of process management.

 2.4.2 The ARG Instruction
ARG [ template ] [, [ template ] ... ];

The ARG instruction will parse the argument strings at the current procedural level into the template.
Parsing will be performed in upper case mode. This clause is equivalent to:

PARSE UPPER ARG [ template ] ;

For more information, see the PARSE instruction. Note that this is the only situation where a 
multistring template is relevant.

Example: Beware assignments

The similarity between ARG and PARSE UPPER ARG has one exception. Suppose the PARSE 
UPPER ARG has an absolute positional pattern as the first element in the template, like:

parse upper arg =(foo) bar

This is not equivalent to an ARG instruction, because ARG instruction would become an assignment.
A simple trick to avoid this problem is just to prepend a placeholder period (.) to the pattern, thus 
the equal sign (=) is no longer the second token in the new ARG instruction. Also, unless the 
absolute positional pattern is indirect, the equal sign can be removed without changing the meaning 
of the statement.

 2.4.3 The CALL Instruction
CALL routine [ parameter ] [, [ parameter ] ... ] ;

{ ON | OFF } condition [ NAME label ] ;

The CALL instruction invokes a subroutine, named by routine, which can be internal, built-in, or 
external; and the three repositories of functions are searched for routine in that order. The token 
routine must be either a literal string or a symbol (which is taken literally). However, if routine is a 
literal string, the pool of internal subroutines is not searched. Note that some interpreters may have 
additional repositories of labels to search.

In a CALL instruction, each parameter is evaluated, strictly in order from left to right, and passed as
an argument to the subroutine.  A parameter might be left out (i.e. an empty argument), which is not
the same as passing the nullstring as argument.

Users often confuse a parameter which is the nullstring with leaving out the parameter. However, 
this is two very different situations.  Consider the following calls to the built-in function 
TRANSLATE():
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say translate('abcDEF'   )   /* says ABCDEF */

say translate('abcDEF',"")   /* says abcDEF */

say translate('abcDEF',,"")  /* says '      ' */ 

The TRANSLATE() function is able to differ between receiving the nullstring (i.e. a defined string 
having zero length), from the situation where a parameter was not specified (i.e. the undefined 
string). Since TRANSLATE() is one of the few functions where the parameters' default values are 
very different from the nullstring, the distinction becomes very visible.

Breakage Alert!! - Start
Prior to Version 3.1 of Regina, the following syntactical use of the CALL instruction was valid:

CALL routine '(' [ parameter ] [, [ parameter ] ... ] ')' ;

e.g.

call myfunc('abcDEF',,"")

This syntax is not allowed by ANSI and use of this syntax will now result in Error 37.1. There 
exists an option introduced in Regina 3.3 which re-enables a similar behaviour, although 
parameters with individual parentheses are allowed since 3.1. The option is called 
CALLS_AS_FUNCS and should
be enabled using the environment variable called REGINA_OPTIONS. See the description of the 
instruction OPTIONS for further details.

Breakage Alert!! - End

For the CALL instruction, watch out for interference with line continuation. If there are trailing 
commas, it might be interpreted as line continuation. Appending a semicolon where appropriate is a 
common solution to make the desired behaviour obvious. If a CALL instruction uses line 
continuation between two parameters, two commas are needed: one to separate the parameters, and 
one to denote line continuation.

A number of settings are stored across internal subroutine calls. An internal subroutine will inherit 
the values in effect when the call is made, and the settings are restored on exit from the subroutine. 
These settings are:

 Conditions traps, see chapter Conditions.
 Current trapped condition, see section CTS.
 NUMERIC settings, see section Numeric.
 ADDRESS environments, see section Address.
 TRACE mode, see section Trace and chapter [not yet written].
 The elapse time clock, see section Time.

Also, the OPTIONS settings may or may not be restored, depending on the implementation; 
Regina restores the current OPTIONS.  Note that external subroutines don't inherit the current 
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OPTIONS as internal subroutines do. See the section OPTIONS for a detailed explanation. Further, 
a number of other things may be saved across internal subroutines. The effect on variables are 
controlled by the PROCEDURE instruction in the subroutine itself. The state of all DO-loops will be 
preserved during subroutine calls.

Example: Subroutines and trace settings

Subroutines can not be used to set various settings like trace settings, NUMERIC settings, etc. Thus, 
the following code will not work as intended:

say digits() /* says 9, maybe */
call inc_digits
say digits() /* still says 9 */
exit

inc_digits:
    numeric digits digits() + 1
    return

The programmer probably wanted to call a routine which incremented the precision of arithmetic 
operations. However, since the setting of NUMERIC DIGITS is saved across subroutine calls, the 
new value set in inc_digits is lost at return from that routine. Thus, in order to work correctly, 
the NUMERIC instruction must be located in the main routine itself.

Built-in subroutines will have no effect on the settings, except for explicitly defined side effects. 
Nor will external subroutines change the settings. For all practical purposes, an external subroutine 
is conceptually equivalent to re-invoking the interpreter in a totally separated process.

If the name of the subroutine is specified by a literal string, then the name will be used as-is; it will 
not be converted to upper case.  This is important because a routine which contains lower case 
letters can only be invoked by using a literal string as the routine name in the CALL instruction.

Example: Labels are literals

Labels are literal, which means that they are neither tail-substituted nor substituted for the value of 
the variable. Further, this also means that the setting of NUMERIC DIGITS has no influence on the
section of labels, even when the labels are numeric symbols. Consider the following code:
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call 654.32
exit

654.321: 
    say here
    return 

654.32: 
    say there
    return

In this example, the second of the two subroutines are always chosen, independent of the setting of 
NUMERIC DIGITS. Assuming that NUMERIC DIGITS are set to 5, then the number 654.321 is 
converted to 654.32, but that does not affect labels. Nor would a statement CALL 6.5432E2 call 
the second label, even though the numeric value of that symbol is equal to that of one of the labels.

The called subroutines may or may not return data to the caller. In the calling routine, the special 
variable RESULT will be set to the return value or dropped, depending on whether any data was 
returned or not. Thus, the CALL instruction is equivalent to calling the routine as a function, and 
assigning the return value to RESULT, except when the routine does not return data.

In Rexx, recursive routines are allowed. A minimum number of 100 nested internal and external 
subroutine invocations, and support for a minimum of 10 parameters for each call are required by 
Rexx. See chapter Limits for more information concerning implementation limits.

When the token following CALL is either ON or OFF, the CALL instruction is not used for calling a 
subroutine, but for setting up condition traps. In this case, the third token of the clause must be the 
name of a condition, which setup is to be changed.

If the second token was ON, then there can be either three or five tokens. If the five token version is 
used, then the fourth token must be NAME and the fifth token is taken to be the symbolic name of a 
label, which is the condition handler. This name can be either a constant string, or a symbol, which 
is taken literally.  When OFF is used, the named condition trap is turned off.

Note that the ON and OFF forms of the CALL instruction were introduced in TRL2. Thus, they are 
not likely to be present on older interpreters. More information about conditions and condition traps
are given in a chapter Conditions.
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 2.4.4 The DO/END Instruction
 DO [ repetitor ] [ conditional ] ;

[ clauses ]
END [ symbol ] ;

 repetitor : = symbol = expri [ TO exprt ]
 [ BY exprb ] [ FOR exprf ]

exprr
FOREVER

conditional : = WHILE exprw
UNTIL expru

The DO/END instruction is the instruction used for looping and grouping several statements into one
block.  This is a multi-clause instruction.

The most simple case is when there is no repetitor or conditional  it groups zero or more Rexx 
clauses into one conceptual statement. This is most often used to execute multiple clauses in an IF 
instruction.
e.g.

if x = 1 then
do

say 'hello'
say 'world'

end

The repetitor subclause controls the control variable of the loop, or the number of repetitions. The 
exprr subclause may specify a certain number of repetitions, or you may use FOREVER to go on 
looping forever.

If you specify the control variable symbol, it must be a variable symbol, and it will get the initial 
value expri at the start of the loop. At the start of each iteration, including the first, it will be 
checked whether it has reached the value specified by exprt. At the end of each iteration the value 
exprb is added to the control variable. The loop will terminate after at most exprf iterations. Note 
that all these expressions are evaluated only once, before the loop is entered for the first iteration.

You may also specify UNTIL or WHILE, which take a boolean expression. WHILE is checked 
before each iteration, immediately after the maximum number of iteration has been performed. 
UNTIL is checked after each iteration, immediately before the control variable is incremented. It is 
not possible to specify both UNTIL and WHILE in the same DO instruction.

The FOREVER keyword is only needed when there is no conditional, and the repetitor would also 
be empty if FOREVER was not specified. Actually, you could rewrite this as DO WHILE 1. The 
two forms are equivalent, except for tracing output.

The subclauses TO, BY, and FOR may come in any order, and their expressions are evaluated in the 
order in which they occur. However, the initial assignment must always come first. Their order may 
affect your program if these expressions have any side effects.  However, this is seldom a problem, 
since it is quite intuitive. 
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Example: Evaluation order

What may prove a real trap, is that although the value to which the control variable is set is 
evaluated before any other expressions in the repetitor, it is assigned to the control variable after all 
expressions in the repetitor have been evaluated.

The following code illustrates this problem:

ctrl = 1
do ctrl=f(2) by f(3) to f(5)

call f 6
end
call f 7
exit

f:
    say 'ctrl='ctrl 'arg='arg(1)
    return arg(1)

This code produces the following output:

ctrl=1 arg=2
ctrl=1 arg=3
ctrl=1 arg=5
ctrl=2 arg=6
ctrl=5 arg=6
ctrl=8 arg=7

Make sure you understand why the program produces this output.  Failure to understand this may 
give you a surprise later, when you happen to write a complex DO-instruction, and do not get the 
expected result.

If the TO expression is omitted, there is no checking for an upper bound of the expression. If the BY 
subclause is omitted, then the default increment of 1 is used. If the FOR subclause is omitted, then 
there is no checking for a maximum number of iterations.

Example: Loop convergence For the reasons just explained, the instruction:

do ctrl=1
nop  /* and other statements */

end

will start with CTRL being 1, and then iterate through 2, 3, 4, ..., and never terminate except by 
LEAVE, RETURN, SIGNAL, or EXIT.

Although similar constructs in other languages typically provokes an overflow at some point, 
something "strange" happens in Rexx.  Whenever the value of ctrl becomes too large, the 

37



incrementation of that variable produces a result that is identical to the old value of ctrl. For 
NUMERIC DIGITS set to 9, this happens when ctrl becomes 1.00000000E+9. When adding 1 to
this number, the result is still 1.00000000E+9. Thus, the loop "converges" at that value.

If the value of NUMERIC DIGITS is 1, then it will "converge" at 10, or 1E+1 which is the 
"correct" way of writing that number under NUMERIC DIGITS 1.  You can in general disregard 
loop "convergence", because it will only occur in very rare situations.

Example: Difference between UNTIL and WHILE

One frequent misunderstanding is that the WHILE and UNTIL subclauses of the DO/END instruction
are equivalent, except that WHILE is checked before the first iteration, while UNTIL is first 
checked before the second iteration.

This may be so in other languages, but in Rexx. Because of the order in which the parts of the loop 
are performed, there are other differences. Consider the following code:

count = 1
do i=1 while count  \= 5

count = count + 1
end
say i count

count = 1
do i=1 until count=5

count = count + 1
end
say i count

After the first loop, the numbers 5 and 5, while in the second loop, the numbers 4 and 5 are written 
out. The reason is that a WHILE clause is checked after the control variable of the loop has been 
incremented, but an UNTIL expression is checked before the incrementation.

A loop can be terminated in several ways. A RETURN or EXIT instruction terminates all active 
loops in the procedure levels terminated. Further, a SIGNAL instruction transferring control (i.e. 
neither a SIGNAL ON nor SIGNAL OFF) terminates all loops at the current procedural level. This 
applies even to "implicit" SIGNAL instructions, i.e. when triggering a condition handler by the 
method of SIGNAL. A LEAVE instruction terminates one or more loops. Last but not least, a loop 
can terminate itself, when it has reached its specified stop conditions.

Note that the SIGNAL instruction terminates also non-repetitive loops (or rather: DO/END pairs), 
thus after an SIGNAL instruction, you must not execute an END instruction without having 
executed its corresponding DO first (and after the SIGNAL instruction). However, as long as you 
stay away from the ENDs, it is all right according to TRL to execute code within a loop without 
having properly activated the loop itself.

Note that on exit from a loop, the value of the control variable has been incremented once after the 
last iteration of the loop, if the loop was terminated by the WHILE expression, by exceeding the 
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number of max iterations, or if the control variable exceeded the stop value. However, the control 
variable has the value of the last iteration if the loop was terminated by the UNTIL expression, or 
by an instruction inside the loop (e.g. LEAVE, SIGNAL, etc.).

The following algorithm in Rexx code shows the execution of a DO instruction, assuming that 
expri, exprt, exprb, exprf, exprw, expru, and symbol have been taken from the syntax diagram of 
DO.

@expri = expri
@exprt = exprt
@exprb = exprb
@exprf = exprf
@iters = 0 

symbol = @expri

start_of_loop:
if symbol > @extrt then signal after_loop
if @iters > @exprf then signal after_loop 
if \exprw then signal after_loop

 instructions
end_of_loop:

if expru then signal after_loop
symbol = symbol + @exprb
signal start_of_loop

after_loop:

Some notes are in order for this algorithm. First, it uses the SIGNAL instruction, which is defined to
terminate all active loops.  This aspect of the SIGNAL instruction has been ignored for the purpose 
of illustrating the DO, and consequently, the code shown above is not suitable for nested loops. 
Further, the order of the first four statements should be identical to the order in the corresponding 
subclauses in the repetitor. The code has also ignored that the WHILE and the UNTIL subclauses 
can not be used in the same DO instruction. And in addition, all variables starting with the at sign 
(@), are assumed to be internal variables, private to this particular loop. Within instructions, a 
LEAVE instruction is equivalent to signal after_loop, while a ITERATE instruction is 
equivalent to signal end_of_loop.

 2.4.5 The DROP Instruction
DROP symbol [ symbol ... ] ;

The DROP instruction makes the named variables uninitialized, i.e. the same state that they had at 
the startup of the program. The list of variable names are processed strictly from left to right and 
dropped in that order.  Consequently, if one of the variables to be dropped is used in a tail of 
another, then the order might be significant. E.g. the following two DROP instructions are not 
equivalent:
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bar = 'a'
drop bar foo.bar  /* drops 'BAR' and 'FOO.BAR' */
bar = 'a'
drop foo.bar bar  /* drops 'FOO.a' and 'BAR'

The variable terms can be either a variable symbol or a symbol enclosed in parentheses. The former
form is first tail-substituted, and then taken as the literal name of the symbol to be dropped. The 
result names the variable to drop. In the latter form, the value of the variable symbol inside the 
parentheses is retrieved and taken as a space separated list of symbols. Each of these symbols is tail-
substituted (if relevant); and the result is taken as the literal name of a variable to be dropped. 
However, this process is not recursive, so that the list of names referred to indirectly can not itself 
contain parentheses. Note that the second form was introduced in TRL2, mainly in order to make 
INTERPRET unnecessary.

In general, things contained in parentheses can be any valid Rexx expression, but this does not 
apply to the DROP, PARSE, and PROCEDURE instructions.

Example: Dropping compound variables

Note a potential problem for compound variables: when a stem variable is set, it will not set a 
default value, rather it will assign "all possible variables" in that stem collection at once. So 
dropping a compound variable in a stem collection for which the stem variable has been set, will set
that compound variable to the original uninitialized value; not the value of the stem variable. See 
section Assign for further notes on assignments.  To illustrate consider the code:

 foo. = 'default'
 drop baz bar foo.bar
 say foo.bar foo.baz /* says 'FOO.BAR default' */

In this example, the SAY instruction writes out the value of the two compound variables FOO.BAR 
and FOO.BAZ. When performing tail-substitution for these, the interpreter finds that both BAR and 
BAZ are uninitialized. Further, FOO.BAR has also been made uninitialized, while FOO.BAZ has the
value assigned to it in the assignment to the stem variable.

Example: Tail-substitution in DROP

For instance, suppose that the variable FOO has the value bar. After being dropped, FOO will have 
its uninitialized value, which is the same as its name: FOO. If the variable to be dropped is a stem 
variable, then both the stem variable and all compound variables of that stem become uninitialized.

 bar = 123
 drop foo.bar   /* drops 'FOO.123' */

Technically, it should be noted that some operations involving dropping of compound variables can 
be very space consuming. Even though the standard does not operate with the term "default value" 
for the value assigned to a stem variable, that is the way in which it is most likely to be 
implemented. When a stem is assigned a value, and some of its compound variables are dropped 
afterwards, then the interpreter must use memory to store references to the variables dropped. This 
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might seem counter-intuitive at first, since dropping ought to release memory, not allocate more.

There is a parallel between DROP and PROCEDURE EXPOSE.  However, there is one important 
difference, although PROCEDURE EXPOSE will expose the name of a variable enclosed in 
parentheses before starting to expose the symbols that variable refers to, this is not so for DROP. If 
DROP had mimicked the behaviour of PROCEDURE EXPOSE in this matter, then the whole 
purpose of indirect specifying of variables in DROP would have been defeated.

Dropping a variable which does not have a value is not an error.  There is no upper limit on the 
number of variables that can be dropped in one DROP clause, other than restrictions on the clause 
length.  If an exposed variable is dropped, the variable in the caller is dropped, but the variable 
remains exposed. If it reassigned a value, the value is assigned to a variable in the caller routine.

 2.4.6 The EXIT Instruction
 EXIT [ expr ] ;

Terminates the Rexx program, and optionally returns the expression expr to the caller. If specified, 
expr can be any string.  In some systems, there are restrictions on the range of valid values for the 
expr. Often the return expression must be an integer, or even a non-negative integer.  This is not 
really a restriction on the Rexx language itself, but a restriction in the environment in which the 
interpreter operates, check the system dependent documentation for more information.

If expr is omitted, nothing will be returned to the caller.  Under some circumstances that is not legal,
and might be handled as an error or a default value might be used. The EXIT instruction behaves 
differently in a "program" than in an external subroutine. In a "program", it returns control to the 
caller e.g. the operating system command interpreter.  While for an external routine, it returns 
control to the calling Rexx script, independent of the level of nesting inside the external routine 
being terminated.

RETURN EXIT

At the main level of the program Exits program Exits program
At an internal subroutine level of the 
program

Exits subroutine, and returns 
to caller

Exits program

At the main level of an external 
subroutine

Exits the external subroutine Exits the external 
subroutine

At a subroutine level within an external
subroutine

Exits the subroutine, returning
to calling routine within 
external subroutine script

Exits the external 
subroutine

Actions of RETURN and EXIT Instructions

If terminating an external routine (i.e. returning to the calling Rexx script) any legal Rexx string 
value is allowed as a return value. Also, no return value can be returned, and in both cases, this 
information is successfully transmitted back to the calling routine.  In the case of a function call (as 
opposed to a subroutine call), returning no value will raise SYNTAX condition {44}. The table 
above describes the actions taken by the EXIT and RETURN instruction in various situations.
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 2.4.7 The IF/THEN/ELSE Instruction
IF expr [;] THEN [;] statement
                        [ ELSE [;] statement ]

This is a normal if-construct. First the boolean expression expr is evaluated, and its value must be 
either 0 or 1 (everything else is a syntax error which raises SYNTAX condition number {34}).  
Then, the statement following either THEN or ELSE is executed, depending on whether expr was 1 
or 0, respectively.

Note that there must come a statement after THEN and ELSE.  It is not allowed to put just a null-
clause (i.e. a comment or a label) there.  If you want the THEN or ELSE part to be empty, use the 
NOP instruction. Also note that you can not directly put more than one statement after THEN or 
ELSE; you have to package them in a DO-END pair to make them a single, conceptual statement.

After THEN, after ELSE, and before THEN, you might put one or more clause delimiters (newlines 
or semicolons), but these are not required. Also, the ELSE part is not required either, in which case 
no code is executed if expr is false (evaluates to 0). Note that there must also be a statement 
separator before ELSE, since the that statement must be terminated. This also applies to the 
statement after ELSE.  However, since statement includes a trailing clause delimiter itself, this is 
not explicitly shown in the syntax diagram.

Example: Dangling ELSE

Note the case of the "dangling" ELSE.  If an ELSE part can correctly be thought of as belonging to 
more than one IF/THEN instruction pair, it will be parsed as belonging to the closest (i.e. 
innermost) IF instruction:

parse pull foo bar
if foo then

if bar then
say 'foo and bar are true'

else
say 'one or both are false'

In this code, the ELSE instruction is nested to the innermost IF, i.e. to IF BAR THEN.

 2.4.8 The INTERPRET Instruction
INTERPRET expr ;

The INTERPRET instruction is used to dynamically build and execute Rexx instructions during 
run-time. First, it evaluates the expression expr, and then parses and interprets the result as a 
(possibly empty) list of Rexx instructions to be executed. For instance:

foo = 'hello, world'
interpret 'say "'foo'!"'

executes the statement SAY "hello, world!" after having evaluated the expression following 
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INTERPRET. This example shows several important aspects of INTERPRET. Firstly, it's very easy 
to get confused by the levels of quotes, and a bit of caution should be taken to nest the quotes 
correctly. Secondly, the use of INTERPRET does not exactly improve readability.

Also, INTERPRET will probably increase execution time considerably if put inside loops, since the 
interpreter may be forced to reparse the source code for each iteration. Many optimizing Rexx 
interpreters (and in particular Rexx compilers) has little or no support for INTERPRET. Since 
virtually anything can happen inside it, it is hard to optimize, and it often invalidates assumptions in
other parts of the script, forcing it to ignore other possible optimizations. Thus, you should avoid 
INTERPRET when speed is at a premium.

There are some restrictions on which statements can be inside an INTERPRET statement. Firstly, 
labels cannot occur there. TRL states that they are not allowed, but you may find that in some 
implementations labels occurring there will not affect the label symbol table of the program being 
run. Consider the statement:

interpret 'signal there; there: say hallo'
there:

This statement transfers control to the label THERE in the program, never to the THERE label inside
the expression of the INTERPRET instruction. Equivalently, any SIGNAL to a label THERE 
elsewhere in the program never transfers control to the label inside the INTERPRET instruction. 
However, labels are strictly speaking not allowed inside INTERPRET strings.

Example: Self-modifying Program

There is an idea for a self-modifying program in Rexx which is basically like this:

string = ''
do i=1 to sourceline()

string = string ';' sourceline(i)
end

string = transform( string )
interpret string
exit

transform: procedure
parse arg string
/* do some transformation on the argument */
return string

Unfortunately, there are several reasons why this program will not work in Rexx, and it may be 
instructive to investigate why.  Firstly, it uses the label TRANSFORM, which is not allowed in the 
argument to INTERPRET. The interpret will thus refer to the TRANSFORM routine of the 
"outermost" invocation, not the one "in" the INTERPRET string.

Secondly, the program does not take line continuations into mind.  Worse, the SOURCELINE() 
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built-in function refers to the data of the main program, even inside the code executed by the 
INTERPRET instruction.  Thirdly, the program will never end, as it will nest itself up till an 
implementation-dependent limit for the maximum number of nested INTERPRET instructions.

In order to make this idea work better, temporary files should be used.

On the other hand, loops and other multi-clause instructions, like IF and SELECT occur inside an 
INTERPRET expression, but only if the whole instruction is there; you can not start a structured 
instruction inside an INTERPRET instruction and end it outside, or vice-versa. However, the 
instruction SIGNAL is allowed even if the label is not in the interpreted string. Also, the instructions
ITERATE and LEAVE are allowed in an INTERPRET, even when they refer to a loop that is 
external to the interpreted string.

Most of the time, INTERPRET is not needed, although it can yield compact and interesting code. If 
you do not strictly need INTERPRET, you should consider not using it, for reasons of compatibility,
speed, and readability. Many of the traditional uses of INTERPRET have been replaced by other 
mechanisms in order to decrease the necessity of INTERPRET; e.g. indirect specification of 
variables in EXPOSE and DROP, the improved VALUE() built-in function, and indirect 
specification of patterns in templates.

Only semicolon (;) is allowed as a clause delimiter in the string interpreted by an INTERPRET 
instruction. The colon of labels can not be used, since labels are not allowed. Nor does specific end-
of-line character sequences have any defined meaning there. However, most interpreters probably 
allow the end-of-line character sequence of the host operating system as alternative clause 
delimiters. It is interesting to note that in the context of the INTERPRET instruction, an implicit, 
trailing clause delimiter is always appended to the string to be interpreted.

 2.4.9 The ITERATE Instruction
ITERATE [ symbol ] ;

The ITERATE instruction will iterate the innermost, active loop in which the ITERATE instruction 
is located. If symbol is specified, it will iterate the innermost, active loop having symbol as control 
variable.  The simple DO/END statement without a repetitor and conditional is not affected by 
ITERATE. All active multiclause structures (DO, SELECT, and IF) within the loop being iterated 
are terminated.

The effect of an ITERATE is to immediately transfer control to the END statement of the affected 
loop, so that the next (if any) iteration of the loop can be started.  It only affects loops on the current
procedural level. All actions normally associated with the end of an iteration is performed.

Note that symbol must be specified literally; i.e. tail substitution is not performed for compound 
variables. So if the control variable in the DO instruction is FOO.BAR, then symbol must use 
FOO.BAR if it is to refer to the control variable, no matter the value of the BAR variable.

Also note that ITERATE (and LEAVE) are means of transferring control in the program, and 
therefore they are related to SIGNAL, but they do not have the effect of automatically terminating 
all active loops on the current procedural level, which SIGNAL has.
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Two types of errors can occur. Either symbol does not refer to any loop active at the current 
procedural level; or (if symbol is not specified) there does not exist any active loops at the current 
procedural level.  Both errors are reported as SYNTAX condition {28}.

 2.4.10 The LEAVE Instruction
LEAVE [ symbol ] ;

This statement terminates the innermost, active loop. If symbol is specified, it terminates the 
innermost, active loop having symbol as control variable. As for scope, syntax, errors, and 
functionality, it is identical to ITERATE, except that LEAVE terminates the loop, while ITERATE 
lets the loop start on the next iteration normal iteration. No actions normally associated with the 
normal end of an iteration of a loop is performed for a LEAVE instruction.

Example: Iterating a simple DO/END

In order to circumvent this, a simple DO/END can be rewritten as this:

if foo then do until 1
say 'This is a simple DO/END group'
say 'but it can be terminated by'
leave
say 'iterate or leave'

end

This shows how ITERATE has been used to terminate what for all practical purposes is a simple 
DO/END group. Either ITERATE or LEAVE can be used for this purpose, although LEAVE is 
perhaps marginally faster.

 2.4.11 The NOP Instruction
NOP ;

The NOP instruction is the "no operation" statement; it does nothing. Actually, that is not totally 
true, since the NOP instruction is a "real" statement (and a placeholder), as opposed to null clauses. 
I've only seen this used in two circumstances.

 After any THEN or ELSE keyword, where a statement is required, when the programmer wants 
an empty THEN or ELSE part. By the way, this is the intended use of NOP.  Note that you can 
not use a null clause there (label, comment, or empty lines), since these are not parsed as 
"independent" statements.

 I have seen it used as "trace-bait". That is, when you start interactive trace, the statement 
immediately after the TRACE instruction will be executed before you receive interactive control.
If you don't want that to happen (or maybe the TRACE instruction was the last in the program), 
you need to add an extra dummy statement.  However, in this context, labels and comments can 
be used, too.
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 2.4.12 The NUMERIC Instruction
NUMERIC DIGITS [ expr ] ;

FORM [ SCIENTIFIC | ENGINEERING | [ VALUE ] expr ] ;
FUZZ [ expr ] ;

Rexx has an unusual form of arithmetic.  Most programming languages use integer and floating 
point arithmetic, where numbers are coded as bits in the computers native memory words. However,
Rexx uses floating point arithmetic of arbitrary precision, that operates on strings representing the 
numbers. Although much slower, this approach gives lots of interesting functionality.  Unless 
number-crunching is your task, the extra time spent by the interpreter is generally quite acceptable 
and often almost unnoticeable.

The NUMERIC statement is used to control most aspects of arithmetic operations. It has three 
distinct forms: DIGITS, FORM and FUZZ; which to choose is given by the second token in the 
instruction:

DIGITS
Is used to set the number of significant digits in arithmetic operations. The initial value is 9, 
which is also the default value if expr is not specified. Large values for DIGITS tend to 
slow down some arithmetic operations considerably. If specified, expr must be a positive 
integer.

FUZZ
Is used in numeric comparisons, and its initial value is 0, which is the also the default value 
if expr is not specified. Normally, two numbers must have identical numeric values for a 
number of their most significant digits in order to be considered equal. How many digits are 
considered is determined by DIGITS. If DIGITS is 4, then 12345 and 12346 are equal, but 
not 12345 and 12356.  However, when FUZZ is non-zero, then only the DIGITS minus 
FUZZ most significant digits are checked. E.g. if DIGITS is 4 and FUZZ are 2, then 1234 
and 1245 are equal, but not 1234 and 1345.

The value for FUZZ must be a non-negative integer, and less than the value of DIGITS. 
FUZZ is seldom used, but is useful when you want to make comparisons less influenced by 
inaccuracies.  Note that using with values of FUZZ that is close to DIGITS may give highly
surprising results.

FORM
Is used to set the form in which exponential numbers are written.  It can be set to either 
SCIENTIFIC or ENGINEERING. The former uses a mantissa in the range 1.000... to 
9.999..., and an exponent which can be any integer; while the latter uses a mantissa in the 
range 1.000... to 999.999..., and an exponent which is dividable by 3. The initial setting is 
SCIENTIFIC which is also the default value if expr is not specified. Following the 
subkeyword FORM may be the subkeywords SCIENTIFIC and ENGINEERING, or the 
subkeyword VALUE. In the latter case, the rest of the statement is considered an expression, 
which will evaluate to either SCIENTIFIC or ENGINEERING.  However, if the first token 
of the expression following VALUE is neither a symbol nor literal string, then the VALUE 
subkeyword can be omitted.

The setting of FORM never affects the decision about whether to choose exponential form or normal 
floating point form; it only affects the appearance of the exponential form once that form has been 
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selected.

Many things can be said about the usefulness of FUZZ. My impression is that it is seldom used in 
Rexx programs. One problem is that it only addresses relative inaccuracy: i.e. that the smaller value
must be within a certain range, that is determined by a percentage of the larger value. Often one 
needs absolute inaccuracy, e.g. two measurements are equal if their difference are less than a certain
absolute threshold.

Example: Simulating relative accuracy with absolute accuracy

As explained above, Rexx arithmetic has only relative accuracy, in order to obtain absolute 
accuracy, one can use the following trick:

numeric fuzz 3
if a=b then

say 'relative accuracy'
if abs(a-b)<=500 then

say 'absolute accuracy'

In the first IF instruction, if A is 100,000, then the range of values for B which makes the 
expression true is 99,500-100,499, i.e. an inaccuracy of about +-500. If A has the value 10,000,000, 
then B must be within the range 9,950,000-10,049,999; i.e. an inaccuracy of about +-50,000.

However, in the second IF instruction, assuming A is 100,000, the expression becomes true for 
values of B in the range 99,500-100,500. Assuming that A is 10,000,000, the expression becomes 
true for values of B in the range 9,999,500-10,000,500.

The effect is largely to force an absolute accuracy for the second example, no matter what the 
values of A and B are. This transformation has taken place since an arithmetic subtraction is not 
affected by the NUMERIC FUZZ, only numeric comparison operations. Thus, the effect of 
NUMERIC FUZZ on the implicit subtraction in the operation = in the first IF has been removed by 
making the subtraction explicit.

Note that there are some minor differences in how numbers are rounded, but this can be fixed by 
transforming the expression into something more complex.

To retrieve the values set for NUMERIC, you can use the built-in functions DIGITS(), FORM(), 
and FUZZ(). These values are saved across subroutine calls and restored upon return.

 2.4.13 The OPTIONS Instruction
OPTIONS expr ;

The OPTIONS instruction is used to set various interpreter-specific options. Its typical uses are to 
select certain Rexx dialects, enable optimizations (e.g. time versus memory considerations), etc. No
standard dictates what may follow the OPTIONS keyword, except that it should be a valid Rexx 
expression, which is evaluated. Currently, no specific options are required by any standard.

The contents of expr is supposed to be word based, and it is the intention that more than one option 
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can be specified in one OPTIONS instruction.  Rexx interpreters are specifically instructed to 
ignore OPTIONS words which they do not recognize.  That way, a program can use run-time 
options for one interpreter, without making other interpreters trip when they see those options. An 
example of OPTION may be:

OPTIONS 4.00 NATIVE_FLOAT

The instruction might instruct the interpreter to start enforcing language level 4.00, and to use 
native floating point numbers in stead of the Rexx arbitrary precision arithmetic.  On the other 
hand, it might also be completely ignored by the interpreter.

It is uncertain whether modes selected by OPTIONS will be saved across subroutine calls. Refer to 
implementation-specific documentation for information about this.

Example: Drawback of OPTIONS

Unfortunately, the processing of the OPTIONS instruction has a drawback. Since an interpreter is 
instructed to ignore option-settings that it does not understand, it may ignore options which are 
essential for further processing of the program. Continuing might cause a fatal error later, although 
the behaviour that would most precisely point out the problem is a complaint about the non-
supported OPTION setting. Consider:

options 'cms_bifs'
pos = find( haystack, needle )

If this code fragment is run on an interpreter that does not support the cms_bifs option setting, 
then the OPTIONS instruction may still seem to have been executed correctly.  However, the second
clause will generally crash, since the FIND() function is still not available. Even though the real 
problem is in the first line, the error message is reported for the second line.

 2.4.14 The PARSE Instruction
PARSE [ option ] [ CASELESS ] type [ template ] ;

option = { UPPER | LOWER }
type = { ARG | LINEIN | PULL | SOURCE | VERSION | VALUE [

expr ] WITH | VAR symbol }

The PARSE instruction takes one or more source strings, and then parses them using the template 
for directions. The process of parsing is one where parts of a source string are extracted and stored 
in variables. Exactly which parts, is determined by the patterns specified by template.  template can 
be a number of patterns separated by commas. A complete description of parsing is given in chapter
[not yet written].

If the option UPPER is specified, the input source strings are uppercased (based on locale) before 
being split into the variables specified by template.

If the option LOWER is specified, the input source strings are lowercased (based on locale) before 
being split into the variables specified by template.
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If CASELESS is specified, any character strings in template will be matched against the source 
strings irrespective of case (based on locale).

Which strings are to be the source of the parsing is defined by the type subclause, which can be any 
of:

ARG.
The data to use as the source during the parsing is the argument strings given at the 
invocation of this procedure level. Note that this is the only case where the source may 
consist of multiple strings.

LINEIN.
Makes the PARSE instruction read a line from the standard input stream, as if the 
LINEIN() built-in function had been called. It uses the contents of that line (after stripping
off end-of-line characters, if necessary) as the source for the parsing. This may raise the 
NOTREADY condition if problems occurred during the read.

PULL.
Retrieves as the source string for the parsing the topmost line from the stack. If the stack is 
empty, the default action for reading an empty stack is taken. That is, it will read a whole 
line from the standard input stream, strip off any end-of-line characters (if necessary), and 
use that string as the source.

SOURCE.
The source string for the parsing is a string containing information about how this 
invocation of the Rexx interpreter was started. This information will not change during the 
execution of a Rexx script. The format of the string is:

system invocation filename

Here, the first space-separated word (system) is a single word describing the platform on 
which the system is running. Often, this is the name of the operating system. The second 
word describes how the script was invoked. TRL2 suggests that invocation could be 
COMMAND, FUNCTION, or SUBROUTINE, but notes that this may be specific to VM/CMS.

Everything after the second word is implementation-dependent. It is indicated that it should 
refer to the name of the Rexx script, but the format is not specified. In practice, the format 
will differ because the format of file names differs between various operating systems. Also,
the part after the second word might contain other types of information. Refer to the 
implementation-specific notes for exact information.

VALUE expr WITH.
This form will evaluate expr and use the result of that evaluation as the source string to be 
parsed. The token WITH may not occur inside expr, since it is a reserved subkeyword in this 
context.

VAR symbol.
This form uses the current value of the named variable symbol (after tail-substitution) as the 
source string to be parsed.  The variable may be any variable symbol. If the variable is 
uninitialized, then a NOTREADY condition will be raised.
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VERSION.
This format resembles SOURCE, but it contains information about the version of Rexx that 
the interpreter supports. The string contains five words, and has the following format:

language level date month year

Where language is the name of the language supported by the Rexx interpreter. This may 
seem like overkill, since the language is Rexx, but there may be various different dialects of
Rexx. The word can be just about anything, except for two restrictions, the first four letters 
should be REXX (in upper case), and the word should not contain any periods. [TRL2] 
indicates that the remainder of the word (after the fourth character) can be used to identify 
the implementation.

The second word is the Rexx language level supported by the interpreter. Note that this is 
not the same as the version of the interpreter, although several implementations makes this 
mistake.  Strictly speaking, neither [TRL1] nor [TRL2] define the format of this word, but a 
numeric format is strongly suggested.

The last three words (date, month, and year) makes up the date part of the string.  This is the
release date of the interpreter, in the default format of the DATE() built-in function.

Much confusion seems to be related to the second word of PARSE VERSION. It describes the 
language level, which is not the same as the version number of the interpreter. In fact, most 
interpreters have a version numbering which is independent of the Rexx language level. 
Unfortunately, several interpreters makes the mistake of using this field as for their own version 
number. This is very unfortunate for two reasons; first, it is incorrect, and second, it makes it 
difficult to determine which Rexx language level the interpreter is supposed to support.

Chances are that you can find the interpreter version number in PARSE SOURCE or the first word 
of PARSE VERSION.

The format of the Rexx language level is not rigidly defined, but TRL1 corresponds to the language
level 3.50, while TRL2 corresponds to the language level 4.00. Both implicitly indicate the that 
language level description is a number, and states that an implementation less than a certain number
"may be assumed to indicate a subset" of that language level. However, this must not be taken to 
literally, since language level 3.50 has at least two features which are missing in language level 4.00
(the Scan trace setting, and the PROCEDURE instruction that is not forced to be the first instruction
in a subroutine). [TRH:PRICE] gives a very good overview over the varying functionality of 
different language levels of Rexx up to level 4.00.

With the release of the ANSI Rexx Standard [ANSI] in 1996, the Rexx language IS now rigidly 
defined.  The language level of ANSI Rexx is 5.00. Regina is now compliant to the ANSI Standard.
Thus PARSE VERSION will return 5.00.  

Note that even though the information of the PARSE SOURCE is constant throughout the execution
of a Rexx script, this is not necessarily correct for the PARSE VERSION. If your interpreter 
supports multiple language levels (e.g. through the OPTIONS instruction), then it will have to 
change the contents of the PARSE VERSION string in order to comply with different language 
levels. To some extent, this may also apply to PARSE SOURCE, since it may have to comply with 
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several implementation-specific standards.

After the source string has been selected by the type subclause in the PARSE instruction, this string 
is parsed into the template. The functionality of templates is common for the PARSE, ARG and 
PULL instructions, and is further explained in chapter [not yet written].

 2.4.15 The PROCEDURE Instruction
PROCEDURE [ EXPOSE [ varref [ varref ... ] ] ] ;

varref = { symbol | ( symbol ) }

The PROCEDURE instruction is used by Rexx subroutines in order to control how variables are 
shared among routines. The simplest use is without any parameters; then all future references to 
variables in that subroutine refer to local variables. If there is no PROCEDURE instruction in a 
subroutine, then all variable references in that subroutine refer to variables in the calling routine's 
name space.

If the EXPOSE subkeyword is specified too, then any references to the variables in the list following
EXPOSE refer to local variables, but to variables in the name space of the calling routine.

Example: Dynamic execution of PROCEDURE

The definition opens for some strange effects, consider the following code:

call testing

testing:
say foo
procedure expose bar
say foo

Here, the first reference to FOO is to the variable FOO in the caller routine's name space, while the 
second reference to FOO is to a local variable in the called routine's name space. This is difficult to 
parse statically, since the names to expose (and even when to expose them) is determined 
dynamically during run-time.  Note that this use of PROCEDURE is allowed in [TRL1], but not in 
[TRL2].

Several restrictions have been imposed on PROCEDURE in [TRL2] in order to simplify the 
execution of PROCEDURE (and in particular, to ease the implementation of optimizing interpreters 
and compilers).

 The first restriction, to which all Rexx interpreters adhere as far as I know, is that each 
invocation of a subroutine (i.e. not the main program) may execute PROCEDURE at most once. 
Both TRL1 and TRL2 contain this restriction. However, more than one PROCEDURE instruction
may exist "in" each routine, as long as at most one is executed at each invocation of the 
subroutine.

 The second restriction is that the PROCEDURE instruction must be the first statement in the 
subroutine. This restriction was introduced between Rexx language level 3.50 and 4.00, but 
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several level 4.00 interpreters may not enforce it, since there is no breakage when allowing it.

There are several important consequences of this second restriction:

(1) it implicitly includes the first restriction listed above, since only one instruction can be the first; 
(2) it prohibits selecting one of several possible PROCEDURE instructions; (3) it prohibits using the 
same variable name twice; first as an exposed and then as a local variable, as indicated in the 
example above; (4) it prohibits the customary use of PROCEDURE and INTERPRET, where the 
latter is used to create a level of indirectness for the PROCEDURE instruction.  This particular use 
can be exemplified by:

testing:
    interpret 'procedure expose' bar

where BAR holds a list of variable names which are to be exposed.  However, in order to make this 
functionality available without having to resort to INTERPRET, which is generally considered 
"bad" programming style, new functionality has been added to PROCEDURE between language 
levels 3.50 and 4.00. If one of the variables in the list of variables is enclosed in parentheses, that 
means indirection.  Then, the variables exposed are: (1) the variable enclosed in parentheses; (2) the
value of that variable is read, and its contents is taken to be a space-separated list of variable names;
and (3) all there variable names are exposed strictly in order from left to right.

Example: Indirect exposing

Consider the following example:

testing:
procedure expose foo (bar) baz

Assuming that the variable BAR holds the value one two, then variables exposed are the 
following: FOO, BAR, ONE, TWO, BAZ, in that order. In particular, note that the variable FOO is 
exposed immediately before the variables which it names are exposed.

Example: Order of exposing

Then there is another fine point about exposing, the variables are hidden immediately after the 
EXPOSE subkeyword, so they are not initially available when the variable list is processed. 
Consider the following code:

 testing:
procedure expose bar foo.bar foo.baz baz

which exposes variables in the order specified. If the variable BAR holds the value 123, then 
FOO.123 is exposed as the second item, since BAR is visible after having already been exposed as 
the first item. On the other hand, the third item will always expose the variable FOO.BAZ, no 
matter what the value of BAZ is in the caller, since the BAZ variable is visible only after it has been 
used in the third item. Therefore, the order in which variables are exposed is important. So, if a 
compound variable is used inside parentheses in an PROCEDURE instruction, then any simple 
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symbols needed for tail substitution must previously to have been explicitly exposed. Compare this 
to the DROP instruction.

What exactly is exposing? Well, the best description is to say that it makes all future uses (within 
that procedural level) to a particular variable name refer to the variable in the calling routine rather 
than in the local subroutine. The implication of this is that even if it is dropped or it has never been 
set, an exposed variable will still refer to the variable in the calling routine.  Another important 
thing is that it is the tail-substituted variable name that is exposed. So if you expose FOO.BAR, and 
BAR has the value 123, then only FOO.123 is exposed, and continues to be so, even if BAR later 
changes its value to e.g. 234.

Example: Global variables

A problem lurking on new Rexx users, is the fact that exposing a variable only exposes it to the 
calling routine. Therefore, it is incorrect to speak of global variables, since the variable might be 
local to the calling routine. To illustrate, consider the following code:

foo = 'bar'
call sub1
call sub2
exit

sub1: procedure expose foo
say foo  /* first says 'bar', then 'FOO' */
return

sub2: procedure
say foo  /* says 'FOO' */
call sub1
return

Here, the first subroutine call in the "main" program writes out bar, since the variable FOO in 
SUB1 refers to the FOO variable in the main program's (i.e. its caller routine's) name space. During 
the second call from the main program, SUB2 writes out FOO, since the variable is not exposed.  
However, SUB2 calls SUB1, which exposes FOO, but that subroutine also writes out FOO. The 
reason for this is that EXPOSE works on the run-time nesting of routines, not on the typographical 
structure of the code. So the PROCEDURE in SUB1 (on its second invocation) exposes FOO to 
SUB2, not to the main program as typography might falsely indicate.

The often confusing consequence of the run-time binding of variable names is that an exposed 
variable of SUB1 can be bound to different global variables, depending on from where it was called.
This differs from most compiled languages, which bind their variables independently of from where
a subroutine is called. In turn, the consequence of this is that Rexx has severe problems storing a 
persistent, static variable which is needed by one subroutine only. A subroutine needing such a 
variable (e.g. a count variable which is incremented each time the subroutine is called), must either 
use an operating system command, or all subroutines calling that subroutine (and their calling 
routines, etc.) must expose the variable. The first of these solution is very inelegant and non-
standard, while the second is at best troublesome and at worst seriously limits the maximum 
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practical size of a Rexx program.  There are hopes that the VALUE() built-in function will fix this 
in future standards of Rexx.

Another important drawback with PROCEDURE is that it only works for internal subroutines; for 
external subroutines it either do not work, or PROCEDURE may not even be allowed on the main 
level of the external subroutine. However, in internal subroutines inside the external subroutines, 
PROCEDURE is allowed, and works like usual.

 2.4.16 The PULL Instruction
PULL [ template ] ;

This statement takes a line from the top of the stack and parse it into the variables in the template. It
will also translate the contents of the line to uppercase.

This statement is equivalent to PARSE UPPER PULL [template ] with the same exception as
explained for the ARG instruction. See chapter [not yet written] for a description of parsing and 
chapter Stack for a discussion of the stack.

 2.4.17 The PUSH Instruction
PUSH [ expr ] ;

The PUSH instruction will add a string to the stack. The string added will either be the result of the 
expr, or the nullstring if expr is not specified.

The string will be added to the top of the stack (LIFO), i.e. it will be the first line normally extracted
from the stack. For a thorough discussion of the stack and the methods of manipulating it, see 
chapter Stack for a discussion of the stack.

 2.4.18 The QUEUE Instruction
 QUEUE [ expr ] ;

The QUEUE instruction is identical to the PUSH instruction, except for the position in the stack 
where the new line is inserted. While the PUSH puts the line on the "top" of the stack, the QUEUE 
instruction inserts it at the bottom of the stack (FIFO), or in the bottom of the topmost buffer, if 
buffers are used.

For further information, refer to documentation for the PUSH instruction, and see chapter Stack for 
general information about the stack.

 2.4.19 The RETURN Instruction
 RETURN [ expr ] ;

The RETURN instruction is used to terminate the current procedure level, and return control to a 
level above. When RETURN is executed inside one or more nesting construct, i.e. DO, IF, WHEN, or 
OTHERWISE, then the nesting constructs (in the procedural levels being terminated) are terminated 
too.

Optionally, an expression can be specified as an argument to the RETURN instruction, and the string
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resulting from evaluating this expression will be the return value from the procedure level 
terminated, to the caller procedure level. When RETURN is executed with no argument, no return 
value is returned to the caller, and then a SYNTAX condition {44} is raised if the subroutine was 
invoked as a function.

Example: Multiple entry points

A routine can have multiple exit points, i.e. a procedure can be terminated by any of several 
RETURN instructions.  A routine can also have multiple entry points, i.e. several routine entry points
can be terminated by the same RETURN instruction.  However, this is rarer than having multiple exit
points, because it is generally perceived that it creates less structured and readable code. Consider 
the following code:

call foo
call bar
call baz
exit

foo:
if datatype(name, 'w') then

drop name
signal baz

bar:
name = 'foo'

baz:
if symbol('name')== 'VAR' then

say 'NAME currently has the value' name
else

say 'NAME is currently an unset variable'
return

Although this is hardly a very practical example, it shows how the main bulk of a routine can be 
used together with three different entry points. The main part of the routine is the IF statement 
having two SAY statements. It can be invoked by calling FOO, BAR, or BAZ.

There are several restrictions to this approach. For instance, the PROCEDURE statement becomes 
cumbersome, but not impossible, to use.

Also note that when a routine has multiple exit points, it may choose to return a return value only at 
some of those exit points.

When a routine is located at the very end of a source file, there is an implicit RETURN instruction 
after the last explicit clause.  However, according to good programming practice, you should avoid 
taking advantage of this feature, because it can create problems later if you append new routines to 
the source file and forget to change the implied RETURN to an explicit one.

If the current procedure level is the main level of either the program or an external subroutine, then 
a RETURN instruction is equivalent to an EXIT instruction, i.e. it will terminate the Rexx program 
or the external routine.  The table in the Exit section shows the actions of both the RETURN and 
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EXIT instructions depending on the context in which they occur.

 2.4.20 The SAY Instruction
SAY [ expr ] ;

Evaluates the expression expr, and prints the resulting string on the standard output stream. If expr 
is not specified, the nullstring is used instead. After the string has been written, an implementation-
specific action is taken in order to produce an end-of-line.

The SAY instruction is roughly equivalent to

call lineout , expr

The differences are that there is no way of determining whether the printing was successfully 
completed if SAY is used, and the special variable RESULT is never set when executing a SAY 
instruction. Besides, the effect of omitting expr is different.  In SAA API, the RXSIOSAY 
subfunction of the RXSIO exit handler is able to trap a SAY instruction, but not a call to the 
LINEOUT() built-in function. Further, the NOTREADY condition is never raised for a SAY 
instruction.

 2.4.21 The SELECT/WHEN/OTHERWISE Instruction
SELECT ; whenpart [ whenpart ... ] [ OTHERWISE [;]

[ statement ... ] ] END ;

whenpart : WHEN expr [;] THEN [;] statement

This instruction is used for general purpose, nested IF structures. An example of the general use of 
the SELECT instruction is:

select
when expr1 then statement1
when expr2 then do

statement2a
statement2b

end
when expr3 then statement3
otherwise

ostatement1
ostatement2

end

When the SELECT instruction is executed, the next statement after the SELECT statement must be 
a WHEN statement. The expression immediately following the WHEN token is evaluated, and must 
result in a valid boolean value. If it is true (i.e. 1), the statement following the THEN token 
matching the WHEN is executed, and afterwards, control is transferred to the instruction following 
the END token matching the SELECT instruction. This is not completely true, since an instruction 
may transfer control elsewhere, and thus implicitly terminate the SELECT instruction; e.g. LEAVE, 
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EXIT, ITERATE, SIGNAL, or RETURN or a condition trapped by method SIGNAL.

If the expression of the first WHEN is not true (i.e. 0), then the next statement must be either another 
WHEN or an OTHERWISE statement. In the former case, the process explained above is iterated. In 
the latter case, the clauses following the OTHERWISE up to the END statement are interpreted.

It is considered a SYNTAX condition, {7} if no OTHERWISE statement when none of the WHEN-
expressions evaluates to true. In general this can only be detected during runtime. However, if one 
of the WHENs is selected, the absence of an OTHERWISE is not considered an error.

By the nature of the SELECT instruction, the WHENs are tested in the sequence they occur in the 
source. If more than one WHEN have an expression that evaluates to true, the first one encountered is
selected.

If the programmer wants to associate more than one statement with a WHEN statement, a DO/END 
pair must be used to enclose the statements, to make them one statement conceptually. However, 
zero, one, or more statements may be put after the OTHERWISE without having to enclose them in 
a DO/END pair. The clause delimiter is optional after OTHERWISE, and before and after THEN.

Example: Writing SELECT as IF

SELECT in Rexx is just a shorthand notation for nested IF instructions. Thus a SELECT 
instruction can always be written as set of nested IF statements; but for very large SELECT 
statements, the corresponding nested IF structure may be too deeply nested for the interpreter to 
handle.

The following code shows how the SELECT statement shown above can be written as a nested IF 
structure:

if expr1 then statement1
else if expr2 then do

statement2a
statement2b

end else if expr3 then statement3
else

ostatement1
ostatement2

end

 2.4.22 The SIGNAL Instruction
SIGNAL { string | symbol } ;

[ VALUE ] expr ;
{ ON | OFF } condition [ NAME
{ string | symbol } ] ;

The SIGNAL instruction is used for two purposes: (a) to transfer control to a named label in the 
program, and (b) to set up a named condition trap.
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The first form in the syntax definition transfers control to the named label, which must exist 
somewhere in the program; if it does not exist, a SYNTAX condition {16} is raised. If the label is 
multiple defined, the first definition is used. The parameter can be either a symbol (which is taken 
literally) or a string. If it is a string, then be sure that the case of the string matches the case of the 
label where it is defined. In practice, labels are in upper case, so the string should contain only 
uppercase letters too, and no space characters.

The second form of the syntax is used if the second token of the instruction is VALUE. Then, the 
rest of the instruction is taken as a general Rexx expression, which result after evaluation is taken to
be the name of the label to transfer control to. This form is really just a special case of the first form,
where the programmer is allowed to specify the label as an expression. Note that if the start of 
expr is such that it can not be misinterpreted as the first form (i.e. the first token of expr is neither 
a string nor a symbol), then the VALUE subkeyword can be omitted.

Example: Transferring control to inside a loop

When the control of execution is transferred by a SIGNAL instruction, all active loops at the current
procedural level are terminated, i.e. they can not continued later, although they can of course be 
reentered from the normal start. The consequence of this is that the following code is illegal:

do forever
signal there

there:
nop
end

The fact that the jump is altogether within the loop does not prevent the loop from being terminated.
Thus, after the jump to the loop, the END instruction is attempted executed, which will result in a 
SYNTAX condition {10}. However, if control is transferred out of the loop after the label, but before
the END, then it would be legal, i.e. the following is legal:

do forever
signal there

there:
nop
signal after
end

after:

This is legal, simply because the END instruction is never seen during this script. Although both 
TRL1 and TRL2 allow this construct, it will probably be disallowed in ANSI.

Just as loops are terminated by a SIGNAL instruction, SELECT and IF instructions are also 
terminated. Thus, it is illegal to jump to a location within a block of statements contained in a 
WHEN, OTHERWISE, or IF instruction, unless the control is transferred out of the block before the 
execution reaches the end of the block.
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Whenever execution is transferred during a SIGNAL instruction, the special variable SIGL is set to 
the line number of the line containing the SIGNAL instruction, before the control is transferred. If 
this instruction extends over several lines, it refers to the first of this. Note that even blanks are part 
of a clause, so if the instruction starts with a line continuation, the real line of the instruction is 
different from that line where the instruction keyword is located.

The third form of syntax is used when the second token in the instruction is either ON or OFF. In 
both cases must the third token in the instruction be then name of a condition (as a constant string or
a symbol, which is taken literally), and the setup of that condition trap is changed. If the second 
token is OFF, then the trap of the named condition is disabled.

If the second token is ON, then the trap of the named condition is enabled. Further, in this situation 
two more tokens may be allowed in the instruction: the first must be NAME and the second must be 
the name of a label (either as a constant string or a symbol, which is taken literally). If the five 
token form is used, then the label of the condition handler is set to the named label, else the name of
the condition handler is set to the default, which is identical to the name of the condition itself.

Note that the NAME subclause of the SIGNAL instruction was a new construct in TRL2, and is not a
part of TRL1. Thus, older interpreters may not support it.

Example: Naming condition traps

Note that the default value for the condition handler (if the NAME subclause is not specified) is the 
name of the condition, not the condition handler from the previous time the condition was enabled. 
Thus, after the following code, the name of the condition handler for the condition SYNTAX is 
SYNTAX, not FOOBAR:

signal on syntax name foobar
signal on syntax

Example: Named condition traps in TRL1

A common problem when trying to port Rexx code from a TRL2 interpreter to a TRL1 interpreter, 
is that explicitly named condition traps are not supported. There exist ways to circumvent this, like:

syntax_name = 'SYNTAX_HANDLER'
signal on syntax
if 1 + 2 then  /* will generate SYNTAX condition */

nop
syntax:
oldsigl = sigl
signal value translate(syntax_name)

syntax_handler:
say 'condition at line' oldsigl 'is being handled...'
exit

Here, a "global" variable is used to store the name of the real condition handler, in the absence of a 
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field for this in the interpreter. This works fine, but there are some problems: the variable 
SYNTAX_NAME must be exposed to everywhere, in order to be available at all times. It would be 
far better if this value could be stored somewhere from which it could be retrieved from any part of 
the script, no matter the current state of the call-stack. This can be fixed with programs like 
GLOBALV under VM/CMS and putenv under Unix.

Another problem is that this destroys the possibility of setting up the condition handler with the 
default handler name. However, to circumvent this, add a new DEFAULT_SYNTAX_HANDLER 
label which becomes the new name for the old SYNTAX label.

Further information about conditions and condition traps are given in chapter Conditions.

 2.4.23 The TRACE Instruction
TRACE [ setting | [ VALUE ] expr ] ;

The TRACE instruction is used to set a tracing mode. Depending on the current mode, various levels
of debugging information is displayed for the programmer. Also interactive tracing is allowed, 
where the user can re-execute clauses, change values of variables, or in general, execute Rexx code 
interactively between the statements of the Rexx script.

If no parameters are specified, then the default value N is assumed.  

If a parameter is given to the TRACE instruction, and the first token in the parameters is not VALUE,
then there must only be one token after TRACE, and it must be either a constant string or a symbol 
(which is taken literally). The value of this token can be either a whole number or a trace setting.

If the first token after TRACE is VALUE, then the remaining parts of the clause is interpreted as an 
expression, the result of which is used as the trace setting.

If setting is a whole number and the number is positive, then the number specifies how many 
interactive pauses to skip if interactive tracing is enabled. If interactive tracing is not enabled, this 
TRACE instruction is ignored. 

If setting is a whole, negative number, then tracing is turned off temporarily for a number of clauses
determined by the absolute value of number.

If setting is a symbol or string, but not a whole number, then the first character (following any 
optional question mark (?) characters) is translated to upper case and must be one of the values 
specified below. The question mark character toggles interactive tracing on or off.

[A]
(All) Traces all clauses before execution.

[C]
(Commands) Traces all command clauses before execution.

[E]
(Errors) Traces any command that would raise the ERROR condition (whether enabled or 
not) after execution. Both the command clause and the return value is traced.
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[F]
(Failures) Trances any command that would raise the FAILURE condition (whether enabled 
or not) after execution. Both the command clause and the return value is traced.

[I]
(Intermediate) Traces not only all clauses, but also traces all evaluation of expressions; even 
intermediate results. This is the most detailed level of tracing.

[L]
(Labels) Traces the name of any label clause executed; whether the label was jumped to or 
not.

[N]
(Normal or Negative) This is the same as the Failure setting.

[O]
(Off) Turns off all tracing.

[R]
(Results) Traces all clauses and the results of evaluating expressions. However, intermediate 
expressions are not traced.

The Errors and Failures settings are not influenced by whether the ERROR or FAILURE 
conditions are enabled or not. These TRACE settings will trace the command and return value after 
the command have been executed, but before the respective condition is raised.

The levels of tracing might be set up graphically, as in the figure below. An arrow indicates that the 
setting pointed to is a superset of the setting pointed from.

    /-> Failures -> Errors -> Commands

  Off                               \

    \-----> Labels --------> All -> Results -> Intermediate

Hierarchy of TRACE settings

According to this figure, Intermediate is a superset of Result, which is a superset of All. 
Further, All is a superset of both Commands and Labels. Commands is a superset of Errors, 
which is a superset of Failures. Both Failure and Labels are supersets of Off. Actually, 
Command is strictly speaking not a superset of Errors, since Errors traces after the command, 
while Command traces before the command.

Scan is not part of this diagram, since it provides a completely different tracing functionality. Note 
that Scan is part of TRL1, but was removed in TRL2. It is not likely to be part of newer Rexx 
interpreters.
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 2.4.24 The UPPER Instruction
UPPER symbol [ symbol [ symbol [...] ] ] ;

The UPPER instruction is used to translate the contents of one or more variables to uppercase.  The 
variables are translated in sequence from left to right.

Each symbol is separated by one or more blanks.

While it is more convenient and probably faster than individual calls to TRANSLATE, UPPER is 
not part of the ANSI standard and is not common in other interpreters so should be avoided.  It is 
provided to ease porting of programs from CMS.

Only simple and compound symbols can be specified.  Specification of a stem variable results in an 
error.

 2.5 Operators
An operator represents an operation to be carried out between two terms, such as division. There are
5 groups of operators in the Rexx Language:  Arithmetic, Assignment, Comparative, 
Concatenation, and Logical Operators.  The groups are shown below in descending order of 
precedence with further details for group. The defined precedence of operators can be overridden by
the use of matching pairs of parentheses: ().

 2.5.1 Arithmetic Operators

Arithmetic operators can be applied to numeric constants and Rexx variables that evaluate to valid 
Rexx numbers.  The following operators are grouped in decreasing order of precedence:

- Unary prefix. Same as 0 – number.

+ Unary prefix. Same as 0 + number.

** Power.

* Multiply.

/ Divide.

% Integer divide.  Divide and return the integer part of the division.

// Remainder divide.  Divide and return the remainder of the division.

+ Add.

− Subtract

 2.5.2 Assignment Operators

Assignment operators are a means to change the value of a variable on the left of the operator.

 2.5.2.1 Basic Assignment Operators

= Assign the value on the right side of the "=" to the variable on the left.
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 2.5.2.2 Shortcut Assignment Operators

Shortcut assignments are an alternate syntax for an operation followed by an assignment. i.e.:
a = 1; b = 2
a += b  equivalent to a = a + b→

These operators are invalid with the  STRICT_ANSI option. Introduced in v3.9.1.

Arithmetic Assignment

The existing value of the variable on the left must be numeric.

+= Add the numeric value on the right of the "+=" to the existing value of the 
variable on the left.
x += 1 is equivalent to x = x + 1

−= Subtract the value on the right of the "−=" from the existing value of the variable 
on the left.

*= Multiply the existing value of the variable on the left of the "−=" by the value on 
the right.

/= Divide the existing value of the variable on the left of  the "/=" by the value on 
the right.

%= Integer divide the existing value of the variable on the left of the "%=" by the 
value on the right.

//= Remainder divide the existing value of the variable on the left of the "//=" by the 
value on the right.

Logical Assignment

The existing value of the variable on the left must be Boolean; ie 0 or 1.

|= Apply inclusive or to the existing Boolean value of the variable on the left of the
"|=" with  the value on the right.

&= Apply logical and to the existing Boolean value of the variable on the left of the 
"&=" with the value on the right.

&&= Apply exclusive or to the existing Boolean value of the variable on the left of 
the "&&=" with  the value on the right.

Concatenation Assignment

||= Append the string on the right of the "||=" to the value of the variable on the left 
with no intervening space.
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 2.5.3 Concatenation Operators

The concatenation operators combine two strings to form one, by appending the second string to the
right side of the first. The Rexx concatenation operators are:

(blank) Concatenation of strings with one space between them.
(abuttal) Concatenation of strings with no intervening space.
|| Concatenation of strings with no intervening space.

Examples:
a = abc;b = 'def'
Say a b  results in 'abc def'→
Say a || b  results in 'abcdef'→
Say a'xyz'  results in 'abcxyz'→

 2.5.4 Comparative Operators

The Rexx comparative operators compare two terms and return the logical value 1 if the result of 
the comparison is true, or 0 if the result of the comparison is false. The non-strict comparative 
operators will ignore leading or trailing blanks for string comparisons, and leading zeros for 
numeric comparisons.  Numeric comparisons are made if both terms to be compared are valid Rexx
numbers, otherwise string comparison is done.  String comparisons are case sensitive, and the 
shorter of the two strings is padded with blanks.

The following lists the non-strict comparative operators.

= Equal
> Greater than.
< Less than.
>= Greater than or equal.
<= Less than or equal
<>,  >< Greater than or less than. Same as Not equal.

The following lists the strict comparative operators.  For two strings to be considered equal when 
using the strict equal comparative operator, both strings must be the same length.

== Strictly equal
>> Strictly greater than.
<< Strictly less than.
>>= Strictly greater than or equal.
<<= Strictly less than or equal.

 2.5.4.1 Negators
Some of the above comparisons can be negated by prefixing a negator character. Regina supports 
the following characters as negators:

\ Backslash (ANSI Standard)
^ Caret
~ Tilde
¬ Logical Not
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Valid negated comparative operators are (any negator character can be used in place of backslash):
\= Not equal
\== Not strictly equal
\> Not greater than
\>> Not strictly greater than
\< Not less than
\<< Not strictly less than

 2.5.5 Logical Operators

Logical operators work with the Rexx strings 1 and 0, usually as a result of a comparative operator. 
These operators also only result in logical TRUE; 1 or logical FALSE; 0. The logical operators are 
shown in decreasing order of precedence.

& And Returns 1 if both terms are 1, otherwise returns 0.

| Inclusive or Returns 1 if either term is 1, otherwise returns 0.

&& Exclusive or Returns 1 if either term is 1 but not if both terms are 1, otherwise 
returns 0.

\ Logical not Reverses the result; 0 becomes 1 and 1 becomes 0. 
(Any negators listed above can be used in place of backslash)

 2.6 Special Variables
The Rexx Language defines a number of special variables which are set by the interpreter during 
the execution of a program. There are two types of special variables. The first are special variables 
that are local in scope and can be changed by the programmer. The second are global in scope and 
cannot be changed by the programmer.

 2.6.1 Local Scope – User Writeable

These varaibles are local in scope and can be changed by the user at any time. The values of these 
variables will however be set by the interpreter during the execution of the program.

RC - (ANSI)
This variable is set by any executed command including those executed via ADDRESS. Note that 
RC is not set for commands executed manually while training interactively.

RESULT - (ANSI)
This variable is set by the RETURN instruction in a subroutine that has been CALLed provided that 
the RETURN instruction contains an expression. RESULT is dropped if the RETURN instruction 
contains no expression.

SIGL - (ANSI)
Contains the line number of instruction executed that caused a jump to a label.

 2.6.2 Global Scope – Read-Only

As these variables begin with a period, they cannot be changed by the programmer. These varaibles 
are global in scope.
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.MN - (ANSI)
When a SYNTAX condition has been raised, this variable is set to the error message number 
(including sub-error number) that caused the SYNTAX condition.

.RC - (ANSI)
Contains the same values as the special variable; RC.

.RS - (ANSI)
This variable is an indicator as to whether the last command executed gave rise to a FAILURE or 
ERROR condition.

.RESULT - (ANSI)
Contains the same values as the special variable; RESULT.

.LINE - (Regina)
This special variable contains the line number of the Rexx program.

.FILE - (Regina)
This special variable contains the fully qualified file name of the Rexx program.

.ENDOFLINE - (Regina)
This special variable contains the default end of line character sequence for the platform on which 
Regina is currently running. In general this will be LF (x0d) on Unix/Linux/Posix platforms CR 
(x0a) on Mac platforms, and CRLF (x0a0d) on all others.

.DIRSEP - (Regina)
This special variable contains the character that is used by the platform to separate directories in a 
fully qualified filename or directory name. In general this will be / (x2F) on Unix/Linux/Posix/Mac 
platforms and \ (x5C) on all others.

 2.7 Implementation-Specific Information

 2.7.1 Miscellaneous

OPTIONS settings
Are saved across subroutines, just like other pieces of information, like conditions settings, 
NUMERIC settings, etc.  See chapter Options for more information about OPTIONS settings.

Return value
To the program that called Regina is limited to being an integer, when this is required by the 
operating systems.  All current implementations are for operating systems that require this.

Default return value
From a Rexx program is 0 under most systems, specifically Unix, OS/2, MS-DOS.  Here, 
VMS deviates, since it uses 1 as the default return value. Using 0 under VMS tends to make
VMS issue a warning saying that no error occurred.

Transferring control into a loop
Works fine in Regina, as long as no END, THEN, ELSE, WHEN, or OTHERWISE instructions 
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are executed afterwards; unless the normal entry-point for the construct has been executed 
after the transfer of control.

PARSE SOURCE information
PARSE VERSION information
Last line of source code

Is implicitly taken to be terminated by an end-of-line sequence in Regina, even if such a 
sequence is not present in the source code of the Rexx script. This applies only to source 
code. Also, the end-of-string in INTERPRET strings is taken to be implicitly terminated by 
an end-of-line character sequence.

Moving code MS-DOS to Unix
Is simplified by Regina, since it will accept the MS-DOS type end of line sequences as 
valid. i.e. any Ctrl-M in front of a Ctrl-J in the source file is ignored on Unix systems by 
Regina.  This applies only to source code.

Labels in INTERPRET
Is handled by Regina in the following way: A label can occur inside an INTERPRET string, 
but it is ignored, and can never be jumped to in a SIGNAL or CALL instruction.

 2.7.2 Implementation of the ADDRESS environment

Most people have problems invoking external programs. This section shows the basic rules, and 
some tricks to let you use Regina and other Rexx interpreters successfully. 

Every call to an external program is executed by an implicit ADDRESS  statement.

'echo Hello planet'
is equivalent to

ADDRESS currentenvironment 'echo Hello planet'

The default environment is SYSTEM in Regina and many other Rexx interpreters. 

Every ADDRESS environment has its own purpose and advantages. It is a good idea to use 
ADDRESS in front of each command. Everybody knows what happens in this case. And you can 
choose the best environment for the command.

SYSTEM aka ENVIRONMENT aka OS2ENVIRONMENT

This is the all-purpose solution for every command. The command is passed to the current 
command interpreter. It is generally the best option for most commands, but is has some 
disadvantages:

• You don't have control over the different interpreters. You can get ugly errors in Windows NT, 
2000, XP or in unices if you don't know how the interpreter interprets your command.

• You have some trouble passing special characters to the command. Have you every tried to pass 
a ">" sign to a command? You won't get what you expect if you don't know how to quote it to 
bypass the interpreter.

• You invoke a separate program just to invoke another program. It costs time and memory usage. 
Choosing another environment may lead to a quicker and safer execution.

67



Use SYSTEM if you want to use pipelines and redirections of the interpreter or if you want to use a 
built-in command of the shell. "echo" is a built-in command in command interpreters. Also, the 
Unix pipeline of commands like "prog1 | prog2 | prog3" cannot be represented shorter in Regina.

COMMAND aka CMD aka PATH

This is the right ADDRESS environment if you know the called program's name but not where it is 
on disk. One example is "sort" in many systems.

Since  Regina has ANSI's extremely useful ADDRESS WITH technique, you can very effectively 
sort queue contents or stem leaves by:
 

ADDRESS PATH 'sort' WITH INPUT STEM unsort. OUTPUT STEM sort.

You let  Regina find the program 'sort' (or SORT.EXE if you use Windows) and get the fastest way 
to do it. You don't have to bother about the current command interpreter;  Regina acts as one. You 
can pass every character you want and  Regina does its best to let it appear in the called program. If 
you want to specify a specific program, simply specify the fully qualified filename of the command 
to execute.

REXX or REGINA

 Use this if you want to execute a Rexx program in a separate instance of the interpreter. Whereas a 
normal CALL on an external program will run the external Rexx program in the current instance of 
Regina, this allows the external Rexx program to run in a new, independent instance of Regina.

Use this environment if:

1. The called interpreter is unstable and a crash in it should not affect the current execution. A 
common situation where you want it, is an external program library you can bind with 
RxFuncAdd. Such a library can crash or terminate the interpreter. The calling interpreter won't 
be affected by this termination.

2. You want to take advantage of the powerful ADDRESS WITH redirection. The general 
mechanism to communicate with external scripts is a queue, but you don't have this in cases 
where you want to pass error messages in a different way or if you use a script which wasn't 
designed to use queues originally.

3. The current interpreter shall be reused and you want to take advantage of the second point. You 
may have different Regina interpreters and you want to use just the current interpreter even if it 
isn't in your path. Regina tries to load the current interpreter a second time if you use this 
ADDRESS environment. There is no difference between ADDRESS REXX and ADDRESS 
REGINA. Regina also attempts to load the same executable that the current instance was started 
from, but not every system passes enough informations to Regina to find its own executable in 
all cases.

ADRRESS WITH on Windows

Redirection of program's input and/or output in general is relatively predictable on most operating 
systems, however mention must be made of behaviour specific to the Windows platform.

Windows and to a lesser degree OS/2, have techniques to hide windows, to start programs in 
separate windows and other cool features.  Florian did some significant testing of this on all different
Windows platforms and there is bad news. There is no consistent mechanism to start external 
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programs without error and full control. Sounds strange, is strange. We have the options to:

• use the interpreter (ADDRESS SYSTEM) or not (ADDRESS PATH or CMD)
• start GUI or text mode programs
• choose the interpreter (CMD.EXE or COMMAND.COM)

The main goal was to start GUIs separately and text mode programs under the control of the caller 
(GUI or text). Regina can be part of a GUI progress and must be treated as GUI in this case. Most 
people get upset with console windows popping up showing nothing.

Some combinations of the interpreter, the target programs, and the options we can pass along to the 
system lead to nonstarting, nonstopping, crashing programs. Or we may loose control by means of 
broken communications to the subprocess (ADDRESS WITH...).

So we had to choose either to let program run safely OR to let program run pretty. Blame the guys 
who designed Windows, not the Regina crew!

So, if you have a DOS graphical extension known as Windows 95, Windows 98 or Windows 
Millennium you will get console windows popping up if run from a GUI program. We are sorry for 
this, we can't change it.

Those Systems with a 32 bit startup kernel known as Windows NT, Windows 2000, Windows XP 
will hide the console windows when starting a text mode program from a GUI program.

ATTENTION: Your programs might crash or you may loose control either of the called program or
of Regina if you change the interpreter inside your Rexx program. Never use 

CALL VALUE 'COMSPEC', something, 'SYSTEM'
in your program if you don't know the consequences!  Unpredictable behaviour is likely to occur; 
use at your own peril!
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 3 Rexx Built-in Functions

This chapter describes the Rexx library of built-in functions. It is divided into three parts:

 First a general introduction to built-in functions, pointing out concepts, pitfalls, parameter 
conventions, peculiarities, and possible system dependencies.

 Then there is the reference section, which describes in detail each function in the built-in 
library.

 At the end, there is documentation that describes where and how Regina differs from standard 
Rexx, as described in the two other sections. It also lists Regina's extensions to the built-in 
library.

It is recommended that you read the first part on first on first reading of this documentation, and 
that you use the second part as reference. The third part is only relevant if you are going to use 
Regina.

 3.1 General Information
This section is an introduction to the built-in functions. It describes common behavior, parameter 
conventions, concepts and list possible system-dependent parts.

 3.1.1 The Syntax Format

In the description of the built-in functions, the syntax of each one is listed. For each of the syntax 
diagrams, the parts written in italic font names the parameters. Terms enclosed in [square brackets]
denote optional elements. And the courier font is used to denote that something should be 
written as is, and it is also used to mark output from the computer. At the right of each function 
syntax is an indication of where the function is defined.  

(ANSI) ANSI Standard for Rexx 1996
(EXT-ANSI) Extended Rexx
(SAA) System Application Architecture - IBM
(OS/2) IBM OS/2 Rexx
(CMS) Rexx on CMS
(AREXX) AREXX on Amiga
(REGINA) Additional function provided by Regina

Definitions of the AREXX built-in functions were taken verbatim in 2003 from
http://dfduck.homeip.net/dfd/ados/arexx/main.shtml

Note that in standard Rexx it is not really allowed to let the last possible parameter be empty if all 
commas are included, although some implementations allow it. In the following calls:
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say D2C( 65 )
say D2C( 65, 1 )
say D2C( 65, )

The two first return the string consisting of a single character A, while the last should return error. If
the last argument of a function call is omitted, you can not safely include the immediately preceding
comma.

 3.1.2 Precision and Normalization

The built-in library uses its own internal precision for whole numbers, which may be the range from
-999999999 to +999999999. That is probably far more than you will ever need in the built-in 
functions.  For most functions, neither parameters nor return values will be affected by any setting 
of NUMERIC DIGITS. In the few cases where this does not hold, it is explicitly stated in the 
description of the function.

In general, only parameters that are required to be whole numbers are used in the internal precision, 
while numbers not required to be whole numbers are normalized according to the setting of 
NUMERIC DIGITS before use.  But of course, if a parameter is a numeric expression, that 
expression will be calculated and normalized under the settings of NUMERIC DIGITS before it is 
given to the function as a parameter.

 3.1.3 Standard Parameter Names

In the descriptions of the built-in functions, several generic names are used for parameters, to 
indicate something about the type and use of that parameter, e.g. valid range. To avoid repeating the 
same information for the majority of the functions, some common "rules" for the standard 
parameter names are stated here. These rules implicitly apply for the rest of this chapter.

Note that the following list does not try to classify any general Rexx "datatypes", but provides a 
binding between the sub-datatypes of strings and the methodology used when naming parameters.

 Length is a non-negative whole number within the internal precision of the built-in functions. 
Whether it denotes a length in characters or in words, depends on the context.

 String can be any normal character string, including the nullstring. There are no further 
requirements for this parameter.  Sometimes a string is called a "packed string" to explicitly 
show that it usually contains more than the normal printable characters.

 Option is used in some of the functions to choose a particular action, e.g. in DATE() to set the 
format in which the date is returned. Everything except the first character will be ignored, and 
case does not matter. note that the string should consequently not have any leading space.

 Start is a positive whole number, and denotes a start position in e.g. a string. Whether it refers to
characters or words depends on the context. The first position is always numbered 1, unless 
explicitly stated otherwise in the documentation.  Note that when return values denotes 
positions, the number 0 is generally used to denote a nonexistent position.

 Padchar must be a string, exactly one character long.  That character is used for padding.
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 Streamid is a string that identifies a Rexx stream. The actual contents and format of such a 
string is implementation dependent.

 Number is any valid Rexx number, and will be normalized according to NUMERIC settings 
before it is used by the function.

If you see one of these names having a number appended, that is only to separate several parameters
of the same type, e.g. string1, string2 etc. They still follow the rules listed above. There are several 
parameters in the built-in functions that do not easily fall into the categories above. These are given 
other names, and their type and functionality will be described together with the functions in which 
they occur.

 3.1.4 Error Messages

There are several errors that might occur in the built-in functions.  Just one error message is only 
relevant for all the built-in functions, that is number 40 (Incorrect call to routine). In fact, an 
implementation of Rexx can choose to use that for any problem it encounters in the built-in 
functions. Regina also provides further information in errors in built-in functions, as defined by the 
ANSI standard. This additional information is provided as sub-error messages and usually provide a
more detailed explanation of the error.

Depending on the implementation, other error messages might be used as well.  Error message 
number 26 (Invalid whole number) might be used for any case where a parameter should have been 
a whole number, or where a whole number is out of range.  It is implied that this error message can 
be used in these situations, and it is not explicitly mentioned in the description of the functions.

Other general error messages that might be used in the built-in functions are error number 41 (Bad 
arithmetic conversion) for any parameter that should have been a valid Rexx number. The error 
message 15 (Invalid binary or hexadecimal string) might occur in any of the conversion routines 
that converts from binary or hexadecimal format (B2X(), X2B(), X2C(), X2D()). And of course
the more general error messages like error message 5 (Machine resources exhausted) can occur.

Generally, it is taken as granted that these error messages might occur for any relevant built-in 
function, and this will not be restated for each function. When other error messages than these are 
relevant, it will be mentioned in the text.

In Rexx, it is in general not an error to specify a start position that is larger than the length of the 
string, or a length that refers to parts of a string that is beyond the end of that string. The meaning of
such instances will depend on the context, and are described for each function.

 3.1.5 Possible System Dependencies

Some of the functions in the built-in library are more or less system or implementation dependent. 
The functionality of these may vary, so you should use defensive programming and be prepared for 
any side-effects that they might have.  These functions include:

 ADDRESS() is dependent on your operating system and the implementation of Rexx, since 
there is no standard for naming environments.

 ARG() at the main level (not in subroutines and functions) is dependent on how your 
implementation handles and parses the parameters it got from the operating system. It is also 
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dependent on whether the user specifies the -a command line switch.

 BITAND(), BITOR() and BITXOR() are dependent on the character set of your machine. 
Seemingly identical parameters will in general return very different results on ASCII and 
EBCDIC machines. Results will be identical if the parameter was given to these functions as a 
binary or hexadecimal literal.

 C2X(), C2D(), D2C() and X2C() will be affected by the character set of your computer 
since they convert to or from characters. Note that if C2X() and C2D() get their first 
parameter as a binary or hexadecimal literal, the result will be unaffected by the machine type. 
Also note that the functions B2X(), X2B(), X2D() and D2X() are not affected by the 
character set, since they do not use character representation.

 CHARIN(), CHAROUT(), CHARS(), LINEIN(), LINEOUT(), LINES() and STREAM() 
are the interface to the file system. They might have system dependent peculiarities in several 
ways. Firstly, the naming of streams is very dependent on the operating system. Secondly, the 
operation of stream is very dependent on both the operating system and the implementation. You
can safely assume very little about how streams behave, so carefully read the documentation for 
your particular implementation.

 CONDITION() is dependent on the condition system, which in turn depends on such 
implementation dependent things as file I/O and execution of commands. Although the general 
operation of this function will be fairly equal among systems, the details may differ.

 DATATYPE() and TRANSLATE() know how to recognize upper and lower case letters, and 
how to transform letters to upper case.  If your Rexx implementation supports national 
character sets, the operation of these two functions will depend on the language chosen.

 DATE() has the options Month, Weekday and Normal, which produce the name of the day 
or month in text.  Depending on how your implementation handles national character sets, the 
result from these functions might use the correct spelling of the currently chosen language.

 DELWORD(), SUBWORD(), WORD(), WORDINDEX(), WORDLENGTH(), WORDPOS() and 
WORDS() requires the concept of a "word", which is defined as a non-blank characters 
separated by blanks. However, the interpretation of what is a blank character depends upon the 
implementation.

 ERRORTEXT() might have slightly different wordings, depending on the implementation, but 
the meaning and numbering should be the same. However, note that some implementations may 
have additional error messages, and some might not follow the standard numbering.  Error 
messages may also be returned in the user's native language.

 QUEUED() refers to the system specific concept of a "stack", which is either internal or 
external to the implementation. The result of this function may therefore be dependent on how 
the stack is implemented on your system.

 RANDOM() will differ from machine to machine, since the algorithm is implementation 
dependent. If you set the seed, you can safely assume that the same interpreter under the same 
operating system and on the same hardware platform will return a reproducible sequence.  But if
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you change to another interpreter, another machine or even just another version of the operating 
system, the same seed might not give the same pseudo-random sequence.

 SOURCELINE() has been changed between Rexx language level 3.50 and 4.00. In 4.00 it can 
return 0 if the Rexx implementation finds it necessary, and any request for a particular line may
get a nullstring as result. Before assuming that this function will return anything useful, consult 
the documentation.

 TIME() will differ somewhat on different machines, since it is dependent on the underlying 
operating system to produce the timing information. In particular, the granularity and accuracy 
of this information may vary.

 VALUE() will be dependent on implementation and operating system if it is called with its third
parameter specified. Consult the implementation specific documentation for more information 
about how each implementation handles this situation.

 XRANGE() will return a string, which contents will be dependent on the character set used by 
your computer. You can safely make very few assumptions about the visual representation, the 
length, or the character order of the string returned by this function.

The built-in functions marked as AREXX are available by default on Amiga and AROS systems, 
but the AREXX_BIFS OPTION is required on other system to make these functions available.

As you can see, even Rexx interpreters that are within the standard can differ quite a lot in the built-
in functions. Although the points listed above seldom are any problem, you should never assume 
anything about them before you have read the implementation specific documentation.  Failure to 
do so will give you surprises sooner or later.

And, by the way, many implementations (probably the majority) do not follow the standard 
completely. So, in fact, you should never assume anything at all. Sorry ...

 3.1.6 Blanks vs. Spaces

Note that the description differs between "blanks" and the <space> character. A blank is any 
character that might be used as "whitespace" to separate text into groups of characters. The <space>
character is only one of several possible blanks. When this text says "blank" it means any one from 
a set of characters that are used to separate visual characters into words. When this text says 
<space>, it means one particular blank, that which is generally bound to the space bar on a normal 
computer keyboard.

All implementation can be trusted to treat the <space> character as blank.  Additional characters 
that might be interpreted as blanks (and are treated as such by Regina) are <tab> (horizontal 
tabulator), <ff> (formfeed), <vt> (vertical tabulator), <nl> (newline) and <cr> (carriage return). The
interpretation of what is blank will vary between machines, operating systems and interpreters. If 
you are using support for national character sets, it will even depend on the language selected. So be
sure to check the documentation before you assume anything about blank characters.

Some implementations use only one blank character, and perceives the set of blank characters as 
equivalent to the <space> character. This will depend on the implementation, the character set, the 
customs of the operating system and various other reasons.
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 3.2 Regina Built-in Functions
Below follows an in depth description of all the functions in the library of built-in functions. Note 
that all functions in this section are available on all ports of Regina. Each function is designated as 
being part of the ANSI standard, or from other implementations. Following sections describe those 
built-in functions that are available on specific ports of Regina, or when Regina is built with certain 
switches.

ABBREV(long, short [,length]) - (ANSI)
Returns 1 if the string short is strictly equal to the leading charcaters of the string long, and returns 
0(zero) otherwise.  The minimum length which short must have, can be specified as length.  If 
length is unspecified, length is set to the length of short. The nullstring is an abbreviation of any 
string.

Note that this function is case sensitive, and that leading and trailing spaces are not stripped off 
before the two strings are compared.

ABBREV('Foobar','Foo') 1

ABBREV('Foobar','Foo',4) 0  /*Too short */

ABBREV('Foobar','foo') 0  /*Different case */

ABBREV('Foobar','',0) 1  /* '' matches any string */

ABBREV('','anything',0) 0  /* nothing matches '' */

ABS(number) - (ANSI)
Returns the absolute value of the number, which can be any valid Rexx number. Note that the result
will be normalized according to the current NUMERIC settings.

ABS(-42) 42

ABS(100) 100

ADDRESS([option]) - (ANSI)
Returns the current default environment to which commands are sent or optionally specific details 
about the targets of command input/output and errors.  The value is set with the ADDRESS clause, 
for more information, see documentation on that clause.

If option is not specified the default option is “N”.
Option can be:

[N]
(Normal) Returns the current default environment.

[I]
(Input) Returns the target details for input as three words: position type resource.

[O]
(Output) Returns the target details for output as three words: position type resource.

[E]
(Error) Returns the target details for errors as three words: position type resource.

75



position will be one of: INPUT (for option “I”), APPEND or REPLACE
type will be one of: STEM, STREAM, FIFO, LIFO, NORMAL
resource will be the name of the stem, stream or queue or blank

ADDRESS() SYSTEM  /* Maybe */

ADDRESS('N') SYSTEM  /* Maybe */

Defaults:

ADDRESS('I') INPUT NORMAL

ADDRESS('O') REPLACE NORMAL

ADDRESS('E') REPLACE NORMAL

After: ADDRESS SYSTEM WITH INPUT FIFO 'MYQUEUE' OUTPUT STEM 
mystem. ERROR APPEND STREAM 'my.err'

ADDRESS('I') INPUT FIFO MYQUEUE

ADDRESS('O') REPLACE STEM MYSTEM.

ADDRESS('E') APPEND STREAM my.err

ARG([argno [,option]]) - (ANSI)
Returns information about the arguments of the current procedure level. For subroutines and 
functions it will refer to the arguments with which they were called. For the "main" program it will 
refer to the arguments used when the Rexx interpreter was called.

Note that under some operating systems, Rexx scripts are run by starting the Rexx interpreter as a 
program, giving it the name of the script to be executed as parameter. Then the Rexx interpreter 
might process the command line and "eat" some or all of the arguments and options.  Therefore, the 
result of this function at the main level is implementation dependent.  The parts of the command 
line which are not available to the Rexx script might for instance be the options and arguments 
meaningful only to the interpreter itself.

Also note that how the interpreter on the main level divides the parameter line into individual 
arguments, is implementation dependent.  The standard seems to define that the main procedure 
level can only get one parameter string, but don't count on it. On all platforms, Regina will receive 
one parameter string at the main procedural level, unless Regina is started with the -a switch, when 
multiple parameter strings are passed in.

For more information on how the interpreter processes arguments when called from the operating 
system, see the documentation on how to run a Rexx script.

When called without any parameters, ARG() will return the number of comma-delimited 
arguments. Unspecified (omitted) arguments at the end of the call are not counted. Note the 
difference between using comma and using space to separate strings.  Only comma-separated 
arguments will be interpreted by Rexx as different arguments.  Space-separated strings are 
interpreted as different parts of the same argument.

Argno must be a positive whole number. If only argno is specified, the argument specified will be 
returned. The first argument is numbered 1. If argno refers to an unspecified argument (either 
omitted or argno is greater than the number of arguments), a nullstring is returned.
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If option is also specified, the return value will be 1 or 0, depending on the value of option and on 
whether the numbered parameter was specified or not. Option can be:

[O]
(Omitted) Returns 1 if the numbered argument was omitted or unspecified. Otherwise, 0 is 
returned.

[E]
(Existing) Returns 1 if the numbered argument was specified, and 0 otherwise.

If called as:

CALL FUNCTION 'This' 'is', 'a',, 'test',,

ARG() 4  /*Last parameter omitted */

ARG(1) 'This is'

ARG(2) 'a'

ARG(3) ''

ARG(9) ''  /*Ninth parameter doesn't exist*/

ARG(2,'E') 1

ARG(2,'O') 0

ARG(3,'E') 0  /*Third parameter omitted */

ARG(9,'O') 1

B2C(binstring) - (AREXX)
Converts a string of binary digits(0,1)into the corresponding(packed)character representation. The 
conversion is the same as though the argument string had been specified as a literal binary 
string(e.g. '1010'B). Blanks are permitted in the string,but only at byte boundaries. This function is 
particularly useful for creating strings that are to be used as bit masks.
  
B2C('00110011') '3'

B2C('01100001') 'A'

B2X(binstring) - (ANSI)
Takes a parameter which is interpreted as a binary string, and returns a hexadecimal string which 
represent the same information. Binstring can only contain the binary digits 0 and 1.  To increase 
readability, blanks may be included in binstring to group the digits into groups. Each such group 
must have a multiple of four binary digits, except from the first group. If the number of binary digits
in the first group is not a multiple of four, that group is padded at the left with up to three leading 
zeros, to make it a multiple of four. Blanks can only occur between binary digits, not as leading or 
trailing characters.

Each group of four binary digits is translated into on hexadecimal digit in the output string. There 
will be no extra blanks in the result, and the upper six hexadecimal digits are in upper case.
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B2X('0010 01011100 0011') '26C3'

B2X('10 0101 11111111') '26FF'

B2X('0100100 0011') '243'

BEEP(frequency [,duration]) - (OS/2)
Sounds the machine's bell. The frequency and duration (in milliseconds) of the tone are specified. If
no duration value is specified, it defaults to 1. Not all operating systems can sound their bells with 
the given specifications.

BEEP(50,1000)

BITAND(string1 [,[string2] [,padchar]]) - (ANSI)
Returns the result from bytewise applying the operator AND to the characters in the two strings 
string1 and string2. Note that this is not the logical AND operation, but the bitwise AND operation. 
String2 defaults to a nullstring. The two strings are left-justified; the first characters in both strings 
will be AND'ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is defined by the 
padchar character. If it is undefined, the remaining part of the longer string is appended to the result
after all characters in the shorter string have been processed. If padchar is defined, each char in the 
remaining part of the longer string is logically AND'ed with the padchar (or rather, the shorter 
string is padded on the right length, using padchar).

When using this function on character strings, e.g. to uppercase or lowercase a string, the result will
be dependent on the character set used. To lowercase a string in EBCDIC, use BITAND() with a 
padchar value of 'bf'x. To do the same in ASCII, use BITOR() with a padchar value of '20'x.
BITAND('123456'x,'3456'x) '101456'x

BITAND('foobar',,'df'x) 'FOOBAR' /*For ASCII*/

BITAND('123456'x,'3456'x,'f0'x) '101450'x

BITCHG(string, bit) - (AREXX)
Changes the state of the specified bit in the argument string.  Bit numbers are defined such that bit 0
is the low-order bit of the rightmost byte of the string.  

BITCHG('0313'x,4) '0303'x

BITCLR(string, bit) - (AREXX)
Clears (sets to zero) the specified bit in the argument string. Bit numbers are defined such that bit 0 
is the low-order bit of the rightmost byte of the string.  

BITCLR('0313'x,4) '0303'x

BITCOMP(string1, string2, bit [,pad]) - (AREXX)
Compares the argument strings bit-by-bit,starting at bit number 0. The returned value is the bit 
number of the first bit in which the strings differ,or -1 if the strings are identical.  
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BITCOMP('7F'x,'FF'x) '7'

BITCOMP('FF'x,'FF'x) '-1'

BITOR(string1 [, [string2] [,padchar]]) - (ANSI)
Returns the result from bytewise applying the operator OR to the characters in the two strings 
string1 and string2. Note that this is not the logical OR operation, but the bitwise OR operation. 
String2 defaults to a nullstring. The two strings are left-justified; the first characters in both strings 
will be OR'ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is defined by the 
padchar character. If it is undefined, the remaining part of the longer string is appended to the result
after all characters in the shorter string have been processed. If padchar is defined, each char in the 
remaining part of the longer string is logically OR'ed with the padchar (or rather, the shorter string 
is padded on the right length, using padchar).

When using this function on character strings, e.g. to uppercase or lowercase a string, the result will
be dependent on the character set used.
BITOR('12'x) '12'x

BITOR('15'x,'24'x) '35'x

BITOR('15'x,'2456'x) '3556'x

BITOR('15'x,'2456'x,'F0'x) '35F6'x

BITOR('1111'x,,'4D'x) '5D5D'x

BITOR('pQrS',,'20'x) 'pqrs' /* ASCII */

BITSET(string, bit) - (AREXX)
Sets the specified bit in the argument string to 1. Bit numbers are defined such that bit 0 is the low-
order bit of the rightmost byte of the string.  

BITSET('0313'x,2) '0317'x

BITTST(string, bit) - (AREXX)
 The boolean return indicates the state of the specified bit in the argument string.  
Bit numbers are defined such that bit 0 is the low-order bit of the rightmost byte to the string.  

BITTST('0313'x,4) '1'

BITXOR(string1[, [string2] [,padchar]]) - (ANSI)
Works like BITAND(), except that the logical function XOR (exclusive OR) is used instead of 
AND. For more information see BITAND().

BITXOR('123456'x,'3456'x) '266256'x

BITXOR('FooBar',,'20'x) 'fOObAR' /*For ASCII */

BITXOR('123456'x,'3456'x,'f0'x) '2662A6'x
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BUFTYPE() - (CMS)
This function is used for displaying the contents of the stack. It will display both the string and 
notify where the buffers are displayed. It is meant for debugging, especially interactive, when you 
need to obtain information about the contents of the stack. It always returns the nullstring, and takes
no parameters.

Here is an example of the output from calling BUFTYPE (note that the second and fourth buffers are
empty):

==> Lines: 4
==> Buffer: 3
"fourth line pushed, in third buffer"
==> Buffer: 2
==> Buffer: 1
"third line pushed, in first buffer"
==> Buffer: 0
"second line pushed, in 'zeroth' buffer"
"first line pushed, in 'zeroth' buffer"
==> End of Stack

C2B(string) - (AREXX)
Converts the supplied string into the equivalent string of binary digits.   

C2B('abc') '011000010110001001100011'

C2D(string [,length]) - (ANSI)
Returns a whole number, which is the decimal representation of the packed string string, interpreted
as a binary number. If length (which must be a non-negative whole number) is specified, it denotes 
the number of characters in string to be converted, and string is interpreted as a two's complement 
representation of a binary number, consisting of the length rightmost characters in string. If length 
is not specified, string is interpreted as an unsigned number.

If length is larger than the length of string, string is sign-extended on the left.  i.e. if the most 
significant bit of the leftmost char of string is set, string is padded with 'ff'x chars at the left 
side. If the bit is not set, '00'x chars are used for padding.

If length is too short, only the length rightmost characters in string are considered. Note that this 
will not only in general change the value of the number, but it might even change the sign.

Note that this function is very dependent on the character set that your computer is using.

If it is not possible to express the final result as a whole number under the current settings of 
NUMERIC DIGITS, and STRICT_ANSI option is in effect, an error is reported.  The number to 
be returned will not be stored in the internal representation of the built-in library, so size restrictions
on whole numbers that generally applies for built-in functions, do not apply in this case.
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C2D('foo') '6713199' /*For ASCII machines */

C2D('103'x) '259'

C2D('103'x,1) '3'

C2D('103'x,2) '259'

C2D('0103'x,3) '259'

C2D('ffff'x,2) '-1'

C2D('ffff'x) '65535'

C2D('ffff'x,3) '65535'

C2D('fff9'x,2) '-6'

C2D('ff80'x,2) '-128'

C2X(string) - (ANSI)
Returns a string of hexadecimal digits that represents the character string string. Converting is done 
bytewise, the six highest hexadecimal digits are in uppercase, and there are no blank characters in 
the result Leading zeros are not stripped off in the result. Note that the behavior of this function is 
dependent on the character set that your computer is running (e.g. ASCII or EBCDIC).

C2X('ffff'x) 'FFFF'

C2X('Abc') '416263' /*For ASCII Machines */

C2X('1234'x) '1234'

C2X('011 0011 1101'b) '033D'

CD(directory) - (REGINA)

CHDIR(directory) - (REGINA)
Changes the current process's directory to the directory specified. A more portable, though non-
standard alternative is to use the DIRECTORY BIF.

CHDIR('/tmp/aa') /* new directory now /tmp/aa */

CENTER(string, length [, padchar ] ) - (ANSI)

CENTRE(string, length [, padchar ] ) - (ANSI)
This function has two names, to support both American and British spelling. It will center string in 
a string total of length length characters. If length (which must be a non-negative whole number) is 
greater than the length of string, string is padded with padchar or <space> if padchar is 
unspecified. If length is smaller than the length of string character will be removed.

If possible, both ends of string receives (or loses) the same number of characters. If an odd number 
of characters are to be added (or removed), one character more is added to (or removed from) the 
right end than the left end of string.
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CENTER('Foobar',10) '  Foobar  '

CENTER('Foobar',11) '  Foobar   '

CENTRE('Foobar',3) 'oob'

CENTER('Foobar',4) 'ooba'

CENTER('Foobar',10,'*') '**Foobar**'

CHANGESTR(needle, haystack, newneedle ) - (ANSI)
The purpose of this function is to replace all occurrences of needle in the string haystack with 
newneedle. The function returns the changed string.

If haystack does not contain needle, then the original haystack is returned.

CHANGESTR('a','fred','c') 'fred'

CHANGESTR('','','x') '' 

CHANGESTR('a','abcdef','x') 'xbcdef'

CHANGESTR('0','0','1') '1'

CHANGESTR('a','def','xyz') 'def'

CHANGESTR('a','','x') ''

CHANGESTR('','def','xyz') 'def'

CHANGESTR('abc','abcdef','xyz') 'xyzdef'

CHANGESTR('abcdefg','abcdef','xyz') 'abcdef'

CHANGESTR('abc','abcdefabccdabcd','z') 'zdefzcdzd'

CHARIN([streamid] [,[start] [,length]]) - (ANSI)
This function will in general read characters from a stream, and return a string containing the 
characters read. The streamid parameter names a particular stream to read from. If it is unspecified, 
the default input stream is used.

The start parameter specifies a character in the stream, on which to start reading. Before anything is
read, the current read position is set to that character, and it will be the first character read. If start is
unspecified, no repositioning will be done.  Independent of any conventions of the operating 
system, the first character in a stream is always numbered 1. Note that transient streams do not 
allow repositioning, and an error is reported if the start parameter is specified for a transient stream.

The length parameter specifies the number of characters to read.  If the reading did work, the return 
string will be of length length. There are no other ways to know many characters were read other 
than checking the length of the return value. After the read, the current read position is moved 
forward as many characters as was read. If length is unspecified, it defaults to 1. If length is 0, 
nothing is read, but the file might still be repositioned if start was specified.

Note that this function reads the stream raw. Some operating systems use special characters to 
differentiate between separate lines in text files.  On these systems these special characters will be 
returned as well.  Therefore, never assume that this function will behave identically for text streams 
on different systems.
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What happens when an error occurs or the End-Of-File (EOF) is seen during reading, is 
implementation dependent. The implementation may choose to set the NOTREADY condition (does 
not exist in Rexx language level 3.50). For more information, see chapter on Stream Input and 
Output.

(Assuming that the file "/tmp/file" contains the first line: "This is the first line"):

CHARIN() 'F'  /*Maybe*/

CHARIN(,,6) 'Foobar'  /*Maybe*/

CHARIN('/tmp/file',,6) 'This i'

CHARIN('/tmp/file',4,6) 's is t'

CHAROUT([streamid] [,[string] [,start]]) - (ANSI)
In general this function will write string to a streamid.  If streamid is not specified the default output
stream will be used.

If start is specified, the current write position will be set to the startth character in streamid, before 
any writing is done. Note that the current write position can not be set for transient streams, and 
attempts to do so will report an error. Independent of any conventions that the operating system 
might have, the first character in the stream is numbered 1. If start is not specified, the current write
position will not be changed before writing.

If string is omitted, nothing is written, and the effect is to set the current write position if start is 
specified. If neither string nor start is specified, the implementation can really do whatever it likes, 
and many implementations use this operation to close the file, or flush any changes. Check 
implementation specific documentation for more information.

The return value is the number of characters in string that was not successfully written, so 0 denotes
a successful write. Note that in many Rexx implementations there is no need to open a stream; it 
will be implicitly opened when it is first used in a read or write operation.

(Assuming the file referred to by outdata was empty, it will contain the string FoobWow 
afterwards. Note that there might will not be an End-Of-Line marker after this string, it depends on 
the implementation.)

CHAROUT(,'Foobar') '0'

CHAROUT(outdata,'Foobar') '0'

CHAROUT(outdata,'Wow',5) '0'

CHARS([streamid]) - (ANSI)
Returns the number of characters left in the named streamid, or the default input stream if streamid 
is unspecified. For transient streams this will always be either 1 if more characters are available, or 
0 if the End-Of-File condition has been met. For persistent streams the number of remaining bytes 
in the file will be possible to calculate and the true number of remaining bytes will be returned.

However, on some systems, it is difficult to calculate the number of characters left in a persistent 
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stream; the requirements to CHARS() has therefore been relaxed, so it can return 1 instead of any 
number other than 0. If it returns 1, you can therefore not assume anything more than that there is at
least one more character left in the input stream.

CHARS() '1' /* more data on def. input stream */

CHARS() '0' /* EOF for def. input stream */

CHARS('outdata') '94' /* maybe */

CLOSE(file) - (AREXX)
Closes the file specified by the given logical name. The returned value is a boolean success flag, and
will be 1 unless the specified file was not open. Use OPTIONS AREXX_SEMANTICS for the 
AREXX behaviour to be executed.

CLOSE('input') '1'

COMPARE(string1, string2 [,padchar]) - (ANSI)
This function will compare string1 to string2, and return a whole number which will be 0 if they are
equal, otherwise the position of the first character at which the two strings differ is returned. The 
comparison is case-sensitive, and leading and trailing space do matter.

If the strings are of unequal length, the shorter string will be padded at the right hand end with the 
padchar character to the length of the longer string before the comparison. If a padchar is not 
specified, <space> is used.

COMPARE('FooBar','Foobar') '4'

COMPARE('Foobar','Foobar') '0'

COMPARE('Foobarrr','Fooba') '6'

COMPARE('Foobarrr','Fooba','r' ) '0'

COMPRESS(string [,list]) - (AREXX)
If the list argument is omitted,the function removes leading,trailing,or embedded blank characters 
from the string argument. If the optional list is supplied, it specifies the characters to be removed 
from the string.

COMPRESS(' why not ') 'whynot'

COMPRESS('++12-34-+','+-') '1234'

CONDITION([option]) - (ANSI)
Returns information about the current trapped condition. A condition becomes the current trapped 
condition when a condition handler is called (by CALL or SIGNAL) to handle the condition.  The 
parameter option specifies what sort of information to return:

[C]
(Condition) The name of the current trapped condition is return, this will be one of the 
condition named legal to SIGNAL ON, like SYNTAX, HALT, NOVALUE, NOTREADY, 
ERROR or FAILURE.
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[D]
(Description) A text describing the reason for the condition. What to put into this variable is 
implementation and system dependent.

[E]
(Extra) The error code (a single number) and a sub-error code if available (two numbers and 
a period; eg 40.5) that was generated by the condition.

[I]
(Instruction) Returns either CALL or SIGNAL, depending on which method was current 
when the condition was trapped.

[S]
(State) The current state of the current trapped condition. This can be one of ON, OFF or 
DELAY. Note that this option reflect the current state, which may change, not the state at the 
time when the condition was trapped.

For more information on conditions, consult the chapter Conditions. Note that condition may in 
several ways be dependent on the implementation and system, so read system and implementation 
dependent information too.

COPIES(string, copies) - (ANSI)
Returns a string with copies concatenated copies of string. Copies must be a non-negative whole 
number. No extra space is added between the copies.

COPIES('Foo',3) 'FooFooFoo'

COPIES('*',16) '****************'

COPIES('Bar ',2) 'Bar Bar '

COPIES('',10000) ''

COUNTSTR(needle, haystack) - (ANSI)
Returns a count of the number of occurrences of needle in haystack that do not overlap.

COUNTSTR('','') 0

COUNTSTR('a','abcdef') 1

COUNTSTR(0,0) 1

COUNTSTR('a','def') 0

COUNTSTR('a','') 0

COUNTSTR('','def') 0

COUNTSTR('abc','abcdef') 1

COUNTSTR('abcdefg','abcdef' 0

COUNTSTR('abc','abcdefabccdabcd') 3

CRYPT(string, salt) - (REGINA)
Encrypts the given string using the supplied salt and returns the encrypted string.  Only the first two
characters of salt are used. Not all operating systems support encryption, and on these platforms, the
string is returned unchanged.  It is also important to note that the encrypted string is not portable 
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between platforms.

CRYPT('a string', '1x') '1xYwPPWI1zRJs' /* maybe */

DATATYPE(string [,option]) - (ANSI)
With only one parameter, this function identifies the "datatype" of string. The value returned will be
"NUM" if string is a valid Rexx number. Otherwise, "CHAR" is returned.  Note that the interpretation
of whether string is a valid number will depend on the current  NUMERIC settings.

If option is specified too, it will check if string is of a particular datatype, and return either "1" or 
"0" depending on whether string is or is not, respectively, of the specified datatype. The possible 
values of option are:

[A]
(Alphanumeric) Consisting of only alphabetic characters (in upper, lower or mixed case) and
decimal digits.

[B]
(Binary) Consisting of only the two binary digits 0 and 1. Note that blanks are not allowed 
within string, as would have been allowed within a binary string. The nullstring is also 
considered a valid binary value.

[L]
(Lower) Consisting of only alphabetic characters in lower case.

[M]
(Mixed) Consisting of only alphabetic characters, but the case does not matter (i.e. upper, 
lower or mixed.)

[N]
(Numeric) If string is a valid Rexx number, i.e. DATATYPE(string) would return NUM.

[S]
(Symbolic) Consists of characters that are legal in Rexx symbols.  Note that this test will 
pass several strings that are not legal symbols. The characters includes plus, minus and the 
decimal point.

[U]
(Upper) Consists of only upper case alphabetic characters.

[W]
(Whole) If string is a valid Rexx whole number under the current NUMERIC setting. Note 
that 13.0 is a whole number since the decimal part is zero.

[X]
(Hexadecimal) Consists of hexadecimal digits, i.e. the decimal digits 0-9 and the alphabetic 
characters A-F in either case (or mixed). Blanks are allowed within string, as long as they 
appear between pairs of hexadecimal digits. The nullstring is also considered a valid 
hexadecimal value.

If you want to check whether a string is suitable as a variable name, you should consider using the 
SYMBOL() function instead, since the Symbolic option only verifies which characters string 
contains, not the order. You should also take care to watch out for lower case alphabetic characters, 
which are allowed in the tail of a compound symbol, but not in a simple or stem symbol or in the 
head of compound symbol.
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Also note that the behavior of the options A, L, M and U might depend on the setting of language, if 
you are using an interpreter that supports national character sets.

DATATYPE(' - 1.35E-5 ') 'NUM'

DATATYPE('1E999999999') 'CHAR'

DATATYPE('1E9999999999') 'CHAR'

DATATYPE('!@#&#$(&*%`') 'CHAR'

DATATYPE('FooBar','A') '1'

DATATYPE('Foo Bar','A') '0'

DATATYPE('010010111101','B') '1'

DATATYPE('0100 1011 1101','B') '0'

DATATYPE('foobar','L') '1'

DATATYPE('FooBar','M') '1'

DATATYPE(' -34E3 ','N') '1'

DATATYPE('A_SYMBOL!?!','S') '1'

DATATYPE('1.23.39E+4.5','S') '1'

DATATYPE('Foo bar','S') '0'

DATATYPE('FOOBAR','U') '1'

DATATYPE('123deadbeef','X') '1'

DATE([opt_out [,date [,opt_in[,sep_out[,sep_in]]]]]) - (ANSI+)
This function returns information relating to the current local date. If the opt_out character is 
specified, it will set the format of the return string. The default value for opt_out is "N".

Possible options are:

[B]
(Base) The number of complete days from January 1st 0001 until yesterday inclusive, as a 
whole number. This function uses the Gregorian calendar extended backwards. Therefore 
Date('B') // 7 will equal the day of the week where 0 corresponds to Monday and 6 Sunday. 
(ANSI)

[C]
(Century) The number of days in this century from January 1st -00 until today, inclusive. 
The return value will be a positive integer. (Regina Extension)

[D]
(Days) The number of days in this year from January 1st until today, inclusive. The return 
value will be a positive integer. (ANSI)

[E]
(European) The date in European format, i.e. "dd/mm/yy". If any of the numbers is single 
digit, it will have a leading zero. (ANSI)

[I]
(ISO) Returns the date according the format specified by International Standards 
Organization Standard ISO 8601:2004. The format will be "yyyy-mm-dd", and each part is
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padded with leading zero where appropriate. (Regina Extension)
[M]

(Month) The unabbreviated name of the current month, in English. (ANSI)
[N]

(Normal) Return the date with the name of the month abbreviated to three letters, with only 
the first letter in upper case. The format will be "dd Mmm yyyy", where Mmm is the month 
abbreviation (in English) and dd is the day of the month, without leading zeros. (ANSI)

[O]
(Ordered) Returns the date in the ordered format, which is "yy/mm/dd". (ANSI)

[S]
(Standard/Sorted) Returns the date according the format specified by International Standards
Organization Standard ISO 2014-1976 (E). The format will be "yyyymmdd", and each part 
is padded with leading zero where appropriate. (ANSI)

[U]
(USA) Returns the date in the format that is normally used in USA, i.e. "mm/dd/yy", and 
each part is padded with leading zero where appropriate. (ANSI)

[W]
(Weekday) Returns the English unabbreviated name of the current weekday for today. The 
first letter of the result is in upper case, the rest is in lower case. (ANSI)

[T]
(time_t) Returns the current UTC date/time in UNIX time_t format.  time_t is the number of 
seconds since January 1st 1970. It always represents the UTC date/time, so any conversion 
from another date format (which is always assumed to be local time) will result in a time_t  
value offset by time zone. (Regina Extension)

Note that the "C" option is present in Rexx language level 3.50, but was removed in level 4.00. The 
new "B" option should be used instead. When porting code that use the "C" option to an interpreter 
that only have the "B" option, you will can use the conversion that January 1st 1900 is day 693595 in
the Gregorian calendar.

Note that none of the formats in which DATE() returns its result are affected by the NUMERIC 
settings. Also note that if there is more than one call to DATE() (or TIME()) in a single clause of 
Rexx code, all of them will use the same basis data for calculating the date (or time).

If the Rexx interpreter contains national support, some of these options may return different output 
for the names of months and weekdays.
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Assuming that today is January 6th 1992:
DATE('B') '727203'

DATE('C') '33609'

DATE('D') '6'

DATE('E') '06/01/92'

DATE('M') 'January'

DATE('N') '6 Jan 1992'

DATE('O') '92/01/06'

DATE('S') '19920106'

DATE('U') '01/06/92'

DATE('W') 'Monday'

DATE('T') 694620000

DATE('I') '1992-01-06'

If the date option is specified, the function provides for date conversions.  The optional opt_in 
specifies the format in which date is supplied.  The possible values for opt_in are:  BDEOUNSTI.
The default value for opt_in is N.
When a date is converted to format T, the returned value is the input date with a time of 00:00:00.

DATE('O','13 Feb 1923') '23/02/13'

DATE('O','06/01/50','U') '50/06/01'

 If the date supplied does not include a century in its format, then the result is chosen to make the 
 year within 50 years past or 49 years future of the current year. 

The date conversion capability of the DATE BIF was introduced with the ANSI standard.

If the sep_out option is provided, the character used to separate the components of the returned date 
can be changed. Any non-alphanumeric character can be used as the separator. This option can only 
be used when opt_out is one of ENOSUI. The default separator for each option is:

E “/”
N “ ” (space)
O “/”
S “” (empty string)
U “/”
I “-”

Assuming that today is January 6th 1992:
DATE('N',,,'_') '6_Jan_1992'

DATE('O','06/01/50','U','') '500601'

DATE('S','13 Feb 1996',N','-') 1996-02-13

If the separator of the date components of date are different to the defaults specified above, then the 
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sep_in option needs to be provided to specify what separator is being used.

DATE('O','06.01.50','U','','.') '500601'

DATE('S','13-02-96',E','-','-') 1996-02-13

The sep_out and sep_in options are extensions to the ANSI standard originally provided by Object 
Rexx.

DELSTR(string, start [,length]) - (ANSI)
Returns string, after the substring of length length starting at position start has been removed. The 
default value for length is the rest of the string. Start must be a positive whole number, while length 
must be a non-negative whole number.  It is not an error if start or length (or a combination of 
them) refers to more characters than string holds 

DELSTR('Foobar',4) 'Foo'

DELSTR('Foobar',4,2) 'Foor'

DELSTR('Foobar',4,4) 'Foo'

DELSTR('Foobar',7) 'Foobar'

DELWORD(string,start[,length]) (ANSI)
Removes length words and all blanks between them, from string, starting at word number start. The
default value for length is the rest of the string.  All consecutive spaces immediately after the last 
deleted word, but no spaces before the first deleted word is removed. Nothing is removed if length 
is zero.

The valid range of start is the positive whole numbers; the first word in string is numbered 1. The 
valid range of length is the non-negative integers. It is not an error if start or length (or a 
combination of them) refers to more words than string holds.

DELWORD('This is a test',3) 'This is '

DELWORD('This is a test',2,1) 'This a test'

DELWORD('This is a test',2,5) 'This'

DELWORD('This is a test',1,3) 'test' /*No leading space*/

DESBUF() - (CMS)
This function removes all buffers on the stack, it is really just a way of clearing the whole stack for 
buffers as well as strings.  Functionally, it is equivalent to executing DROPBUF with a parameter of 
0.  (Actually, this is a lie, since DROPBUF is not able to take zero as a parameter.  Rather, it is 
equivalent to executing DROPBUF with 1 as parameter and then executing DROPBUF without a 
parameter, but this is a subtle point.) It will return the number of buffers left on the stack after the 
function has been executed. This should be 0 in all cases.

DESBUF() 0
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DIGITS() - (ANSI)
Returns the current precision of arithmetic operations. This value is set using the NUMERIC 
DIGITS statement. For more information, refer to the documentation on NUMERIC DIGITS.

DIGITS() '9' /* Maybe */

DIRECTORY([new directory]) - (OS/2)
Returns the current directory for the running process, and optionally changes directory to the 
specified new directory.  If the new directory exists, and the change to new directory succeeds, the 
new directory is returned.  If the new directory does not exist or an error occurred changing to that 
new directory, the empty string is returned.

DIRECTORY() '/tmp' /* Maybe */

DIRECTORY('c:\temp') 'c:\temp' /* Maybe */

D2C(integer [,length]) - (ANSI)
Returns a (packed) string, that is the character representation of integer, which must be a whole 
number, and is governed by the settings of NUMERIC DIGITS, not of the internal precision of the 
built-in functions. If length is specified the string returned will be length bytes long, with sign 
extension. If length (which must be a non-negative whole number) is not large enough to hold the 
result, an error is reported.

If length is not specified, integer will be interpreted as an unsigned number, and the result will have 
no leading <nul> characters.  If integer is negative, it will be interpreted as a two's complement, and
length must be specified.

D2C(0) '00'x

D2C(65) 'A' /* on ASCII machines */

D2C(127) '7F'x

D2C(128) '80'x

D2C(128,3) '000080'x

D2C(-128) Error 40.13 and SYNTAX condition raised

D2C(-10,3) 'fffff5'x

D2X(integer [,length]) - (ANSI)
Returns a hexadecimal number that is the hexadecimal representation of integer. If integer is not a 
whole number under the current settings of NUMERIC DIGITS, and STRICT_ANSI option is in 
effect, Error 40.35 is reported.  

If length is not specified, then integer must be non-negative, and the result will be stripped of any 
leading zeros.

If length is specified, then the resulting string will be sign-extended to length, truncating leading 
characters if necessary.
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D2X(0) '0'

D2X(65) '41'

D2X(127) '7F'

D2X(128) '80'

D2X(128,5) '00080'

D2X(-128) Error 40.13 and SYNTAX condition raised

D2X(-128,5) 'FFF80'

D2X(888888) 'D9038'

D2X(888888,3) '038'

DROPBUF([number]) - (CMS)
This function will remove zero or more buffers from the stack. Called without a parameter, it will 
remove the topmost buffer from the stack, provided that there were at least one buffer in the stack. 
If there were no buffers in the stack, it will remove all strings in the stack, i.e. remove the zeroth 
buffer.

If the parameter number was specified, and the stack contains a buffer with an assigned number 
equal to number, then that buffer itself, and all strings and buffers above it on the stack will be 
removed; but no strings or buffers below the numbered buffer will be touched. If number refers to a 
buffer that does not exist in the stack; no strings or buffers in the stack is touched.

As an extra extension, in Regina the DROPBUF() built-in function can be given a non-positive 
integer as parameter. If the name is negative then it will convert that number to its absolute value, 
and remove that many buffers, counted from the top. This is functionally equivalent to repeating 
DROPBUF() without parameters for so many times as the absolute value of the negative number 
specifies. Note that using -0 as parameter is equivalent to removing all strings and buffers in the 
stack, since -0 is equivalent to normal 0. The number is converted during evaluation of parameters 
prior to the call to the DROPBUF() routine, so the sign is lost.

The value returned from this function is the number of buffers left on the stack after the buffers to 
be deleted have been removed.  Obviously, this will be a non-negative integer. This too, deviates 
from the behavior of the DROPBUF command under CMS, where zero is always returned.

DROPBUF(3) 2 /* remove buffer 3 and 4 */

DROPBUF(4) 0 /* no buffers on the stack */

DROPBUF() 4 /* if there where 5 buffers */

EOF(file) - (AREXX)
Checks the specified logical file name and returns the boolean value 1(True) if the end-of-file has 
been reached, and 0(False)otherwise.  Use OPTIONS AREXX_SEMANTICS for the AREXX 
behaviour to be executed.

EOF('infile') '1' /* maybe */

92



ERRORTEXT(errorno [, lang]) - (ANSI)
Returns the Rexx error message associated with error number errorno.  If the lang character is 
specified, it will determine the native language in which the error message is returned. The default 
value for lang is "N".

Possible options are:

[N]
(Normal) The error text is returned in the default native language.

[S]
(Standard English) The error text is returned in English.

For more information on how Regina supports different native languages, see Native Language 
Support.
If the error message is not defined, a nullstring is returned.

ERRORTEXT(20) 'Symbol expected'

ERRORTEXT(30) 'Name or string too long'

ERRORTEXT(40) 'Incorrect call to routine'

errorno can also be specified as an errorno followed by a sub error number, with a period between. 
The resulting string will be the text of the sub-error number with place-markers indicating where 
substitution values would normally be placed. 

ERRORTEXT(40.24) <bif> argument 1 must be a binary string;
found "<value>"

Regina also supports messages in several native languages.  See the section on Native Language 
Support for details on how this is configured.  With DE as the native language in effect:

ERRORTEXT(40.24) Routine <bif>, Argument 1 muß eine 
Binätzeichenkette sein; "<value>"

ERRORTEXT(40.24,'S') <bif> argument 1 must be a binary string;
found "<value>"

The error messages in Rexx might be slightly different between the various implementations.  The 
ANSI standard says that errno must be in the range 0-90, but in some implementations it might be 
within a less restricted range which gives room for system specific messages.  You should in general
not assume that the wordings and ordering of the error messages are constant between 
implementations and systems.

With OPTIONS STRICT_ANSI, Regina will return an error if errorno is larger than 90:

ERRORTEXT(200) ERRORTEXT argument 1, must have an integer part in the range 0:90 and 
a decimal part no larger than .9; found 200

With OPTIONS NOSTRICT_ANSI (the default) Regina treats any errorno larger than 100 as an 
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operating system error. Regina first subtracts 100 from errorno and then obtains the text for errorno
from the operating system. This facility is used to replace the now deprecated UNIXERROR BIF.

ERRORTEXT(200) Network is down /* system errno 100 */

ERRORTEXT(777) Unknown error /* system errno 677 */

EXISTS(filename) - (AREXX)
Tests whether the specified name of the given filename exists. The filename string may include any 
portion of a full file path specification. Note that the argument is not a logical file name used in 
other ARexx file functions.  A more portable equivalent of this is to use the 'QUERY EXISTS' 
command of the STREAM BIF.   

EXISTS('c:\temp\infile.txt') '1' /* maybe */

EXPORT(address, [string], [length] [,pad]) - (AREXX)
Copies data from the (optional) string into a previously-allocated memory area, which must be 
specified as a 4-byte address. The length parameter specifies the maximum number of characters to 
be copied;  the default is the length of the string. If the specified length is longer than the string, the 
remaining area is filled with the pad character or nulls('00'x). The returned value is the number  
of characters copied.  
Caution is advised in using this function. Any area of memory can be overwritten,possibly 
causing a system crash.
See also STORAGE() and IMPORT().
Note that the address specified is subject to a machine's endianess.

EXPORT('0004 0000'x,'The answer') '10'

FILESPEC(option, filespec) - (OS/2)
Returns the specified portion of a passed filespec,  depending on the option passed. 
Possible options are:

[Drive]
The file's drive. On platforms that don't have the concept of a drive letter, returns blank.

[Name]
The file's name. This is the string following the last path delimiter (if there is one).

[Path]
The file's path. This is the string up to, and including the last path delimiter.

Only the first letter of option is required.

FILESPEC('Drive','C:\config.sys') 'C'

FILESPEC('Name','C:\config.sys') 'config.sys'

FILESPEC('Path','C:\config.sys') '\'

FILESPEC('Drive','/usr/bin/regina') ''

FILESPEC('Name','/usr/bin/regina') 'regina'

FILESPEC('Path','/usr/bin/regina') '/usr/bin/'
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FIND(string, phrase) - (CMS)
Searches string for the first occurrence of the sequence of blank-delimited words phrase, and return 
the word number of the first word of phrase in string.  Multiple blanks between words are treated as
a single blank for the comparison. Returns 0 if phrase not found. Deprecated: see WORDPOS().

FIND('now is the time','is the time') 2

FIND('now is  the time','is    the') 2

FIND('now is  the time','is  time') 0

FORK() - (REGINA)
This function spawns a new process as a child of the current process at the current point in the 
program where FORK is called. The program then continues from this point as two separate 
processes; the parent and the child.  FORK returns 0 to the child process, and the process id of the 
child process spawned to the parent (always non-zero). A negative return value indicates an error 
while attempting to create the new process. FORK is not available on all platforms. If FORK is not 
supported, it will always return '1'. It is safe to assume that a return value of '1' means that FORK is 
not supported.  All platforms AFAIK, will never return '1' as a child process id; that number is 
usually reserved for the first process that starts on a machine.

FORK() '0' /* To child */

'3456' /* maybe to parent */

FORM() - (ANSI)
Returns the current "form", in which numbers are presented when exponential form is used. This 
might be either SCIENTIFIC (the default) or ENGINEERING. This value is set through the 
NUMERIC FORM clause. For more information, see the documentation on NUMERIC FORM.

FORM() 'SCIENTIFIC' /* Maybe */

FORMAT(number [,[before] [,[after] [,[expp] [,[expt]]]]]) - (ANSI)
This function is used to control the format of numbers, and you may request the size and format in 
which the number is written. The parameter number is the number to be formatted, and it must be a 
valid Rexx number. note that before any conversion or formatting is done, this number will be 
normalized according to the current NUMERIC settings.

The before and after parameters determines how many characters that are used before and after the 
decimal point, respectively.  Note that before does not specify the number of digits in the integer 
part, it specifies the size of the field in which the integer part of the number is written. Remember to
allocate space in this field for a minus too, if that is relevant. If the field is not long enough to hold 
the integer part (including a minus if relevant), an error is reported.

The after parameter will dictate the size of the field in which the fractional part of the number is 
written. The decimal point itself is not a part of that field, but the decimal point will be omitted if 
the field holding the fractional part is empty. If there are less digits in the number than the size of 
the field, it is padded with zeros at the right. If there is more digits then it is possible to fit into the 
field, the number will be rounded (not truncated) to fit the field.
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Before must at least be large enough to hold the integer part of number. Therefore it can never be 
less than 1, and never less than 2 for negative numbers. The integer field will have no leading 
zeros, except a single zero digit if the integer part of number is empty.

The parameter expp the size of the field in which the exponent is written. This is the size of the 
numeric part of the exponent, so the "E" and the sign comes in addition, i.e. the real length if the 
exponent is two more than expp specifies. If expp is zero, it signalizes that exponential form should 
not be used.  Expp must be a non-negative whole number. If expp is positive, but not large enough 
to hold the exponent, an error is reported.

Expt is the trigger value that decides when to switch from simple to exponential form. Normally, the
default precision (NUMERIC DIGITS) is used, but if expt is set, it will override that. Note that if 
expt is set to zero, exponential form will always be used. However, if expt tries to force exponential 
form, simple form will still be used if expp is zero. Negative values for expt will give an error. 
Exponential form is used if more digits than expt is needed in the integer part, or more than twice 
expt digits are needed in the fractional part.

Note that the after number will mean different things in exponential and simple form.  If after is set 
to e.g. 3, then in simple form it will force the precision to 0.001, no matter the magnitude of the 
number.  If in exponential form, it will force the number to 4 digits precision.

FORMAT(12.34,3,4) ' 12.3400'

FORMAT(12.34,3,,3,0) '  1.234E+001'

FORMAT(12.34,3,1) ' 12.3400'

FORMAT(12.34,3,0) ' 12.3'

FORMAT(12.34,3,4) ' 12'

FORMAT(12.34,,,,0) '1.234E+1'

FORMAT(12.34,,,0) '12.34'

FORMAT(12.34,,,0,0) '12.34'

FREESPACE(address, length) - (AREXX)
Returns a block of memory of the given length to the interpreter's internal pool. The address 
argument must be a 4-byte string obtained by a prior call to GETSPACE(),the internal allocator. It is
not always necessary to release internally-allocated memory,since it will be released to the system 
when the program terminates. However,if a very large block has been allocated,returning it to the 
pool may avoid memory space problems. The return value is a boolean success flag.  
See also GETSPACE()

FREESPACE('00042000'x,32) '1'

FUZZ() - (ANSI)
Returns the current number of digits which are ignored when comparing numbers, during operations
like = and >. The default value for this is 0. This value is set using the NUMERIC FUZZ statement, 
for more information see that.

FUZZ() '0' /* Maybe */
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GETCALLER([level]) - (REGINA)
Returns the fully qualified file name of the Rexx program that called the current program. The 
optional argument level specifies the level in Regina's call stack you wish to query. The immediate 
level is 1, the level above that is 2, etc. If not specified level is 1. Where level exceeds Regina's call 
stack this function returns the empty string.

GETCALLER() 'C:\regina\fred1.rexx' /* (Maybe) */

GETCALLER(1) 'C:\regina\fred1.rexx' /* (Maybe) */

GETCALLER() '' /* this program called from OS */

GETCALLER(55) '' /* (Probably) */

GETCALLSTACK([stem]) - (REGINA)
If the optional argument stem is provided, populates that array with the contents of the current call 
stack.  If no stem argument is provided the current call stack is sent to stderr. Each item in the array 
contains the line number from which the routine was called followed by the routine name.

GETCALLSTACK('stack.') '2' /* stack.0 (Maybe) */

GETENV(environmentvar) - (REGINA)
Returns the value of the environment variable from the system. If this variable is not defined, a 
nullstring is returned.  It is not possible to use this function to determine whether the variable was 
unset, or just set to the nullstring.

This function is now obsolete, instead you should use:

VALUE( environmentvar, ,'SYSTEM' )

GETPID() - (REGINA)
Returns the process id of the currently running process.

GETPID() '234' /* Maybe */

GETSPACE(length) - (AREXX)
Allocates a block of memory of the specified length from the interpreter's internal pool. The 
returned value is the 4-byte address of the allocated block, which is not cleared or otherwise 
initialized. Internal memory is automatically returned to the system when the Rexx program 
terminates,so this function  
should not be used to allocate memory for use by external programs. 
See also FREESPACE()  

GETSPACE(32) '0003BF40' /* maybe */

GETTID() - (REGINA)
Returns the thread id of the currently running process.

GETTID() '2' /* Maybe */
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HASH(string) - (AREXX)
Returns the hash attribute of a string as a decimal number,and updates the internal hash value of the 
string.

HASH('1') '49'

IMPORT(address [,length]) - (AREXX)
Creates a string by copying data from the specified 4-byte address. If the length parameter is not 
supplied,the copy terminates when a null byte is found.
See also EXPORT()
Note that the address specified is subject to a machine's endianess.

IMPORT('0004 0000'x,10) 'The answer' /* maybe */

INDEX(haystack, needle [,start]) - (CMS)
Returns the character position of the string needle in haystack. If needle is not found, 0 is returned.  
By default the search starts at the first character of haystack (start is 1). This can be overridden by 
giving a different start, which must be a positive, whole number. See POS function for an ANSI 
function that does the same thing.

INDEX('abcdef','cd') '3'

INDEX('abcdef','xd') '0'

INDEX('abcdef','bc',3) '0'

INDEX('abcabc','bc',3) '5'

INDEX('abcabc','bc',6) '0'

INSERT(string1, string2 [,position [,length [,padchar]]]) - (ANSI)
Returns the result of inserting string1 into a copy of string2. If position is specified, it marks the 
character in string2 which string1 it to be inserted after. Position must be a non-negative whole 
number, and it defaults to 0, which means that string2 is put in front of the first character in string1.

If length is specified, string1 is truncated or padded on the right side to make it exactly length 
characters long before it is inserted. If padding occurs, then padchar is used, or <space> if padchar 
is undefined.

INSERT('first','SECOND') 'firstSECOND'

INSERT('first','SECOND',3) 'SECfirstOND '

INSERT('first','SECOND',3,10) 'SECfirst     OND '

INSERT('first','SECOND',3,10,'*') 'SECfirst*****OND '

INSERT('first','SECOND',3,4) 'SECfirsOND '

INSERT('first','SECOND',8) 'SECOND  first' 

JUSTIFY(string, length [,pad]) - (CMS)
Formats blank-delimited words in string, by adding pad characters between words to justify to both 
margins. That is, to width length (length must be non-negative). The default pad character is a 
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blank.
string is first normalized as though SPACE(string) had been executed (that is, multiple blanks are 
converted to single blanks, and leading and trailing blanks are removed). If length is less than the 
width of the normalized string, the string is then truncated on the right and any trailing blank is 
removed.  Extra pad characters are then added evenly from the left to right to provide the required 
length, and the blanks between words are replaced with the pad character.

JUSTIFY('The blue sky',14) 'The  blue   sky'

JUSTIFY('The blue sky',8) 'The blue'

JUSTIFY('The blue sky',9) 'The  blue'

JUSTIFY('The blue sky',9,'+') 'The++blue'

LASTPOS(needle, haystack [,start]) - (ANSI)
Searches the string haystack for the string needle, and returns the position in haystack of the first 
character in the substring that matched needle. The search is started from the right side, so if needle 
occurs several times, the last occurrence is reported.

If start is specified, the search starts at character number start in haystack. Note that the standard 
only states that the search starts at the startth character. It is not stated whether a match can partly 
be to the right of the start position, so some implementations may differ on that point.

LASTPOS('be',To be or not to be') 17

LASTPOS('to',to be or not to be',10) 3

LASTPOS('is',to be or not to be') 0

LASTPOS('to',to be or not to be',0) 0

LEFT(string, length [,padchar]) - (ANSI)
Returns the length leftmost characters in string. If length (which must be a non-negative whole 
number) is greater than the length of string, the result is padded on the right with <space> (or 
padchar if that is specified) to make it the correct length.

LEFT('Foo bar',5) 'Foo b'

LEFT('Foo bar',3) 'Foo'

LEFT('Foo bar',10) 'Foo bar   '

LEFT('Foo bar',10,'*') 'Foo bar***'

LENGTH(string) - (ANSI)
Returns the number of characters in string.

LENGTH('') '0'

LENGTH('Foo') '3'

LENGTH('Foo bar') '7'

LENGTH(' foo  bar ') '10'
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LINEIN([streamid][,[line][,count]]) - (ANSI)
Returns a line read from a file. When only streamid is specified, the reading starts at the current 
read position and continues to the first End-Of-Line (EOL) mark. Afterward, the current read 
position is set to the character after the EOL mark which terminated the read-operation. If the 
operating system uses special characters for EOL marks, these are not returned by as a part of the 
string read..

The default value for streamid is default input stream. The format and range of the string streamid 
are implementation dependent.

The line parameter (which must be a positive whole number) might be specified to set the current 
position in the file to the beginning of line number line before the read operation starts. If line is 
unspecified, the current position will not be changed before the read operation. Note that line is only
valid for persistent steams. For transient streams, an error is reported if line is specified. The first 
line in the stream is numbered 1.

Count specifies the number of lines to read. However, it can only take the values 0 and 1. When it 
is 1 (which is the default), it will read one line. When it is 0 it will not read any lines, and a 
nullstring is returned. This has the effect of setting the current read position of the file if line was 
specified.

What happens when the functions finds a End-Of-File (EOF) condition is to some extent 
implementation dependent. The implementation may interpret the EOF as an implicit End-Of-Line 
(EOL) mark is none such was explicitly present. The implementation may also choose to raise the 
NOTREADY condition flag (this condition is new from Rexx language level 4.00).

Whether or not stream must be explicitly opened before a read operation can be performed, is 
implementation dependent. In many implementations, a read or write operation will implicitly open 
the stream if not already open.

Assuming that the file /tmp/file contains the three lines: "First line", Second line" and "Third 
line":

LINEIN('/tmp/file',1) 'First line'

LINEIN('/tmp/file') 'Second line'

LINEIN('/tmp/file',1,0) '' /* But sets read position */

LINEIN('/tmp/file') 'First line'

LINEIN() 'Hi, there!' /* maybe */

LINEOUT([streamid] [,[string] [,line]]) - (ANSI)
Returns the number of lines remaining after having positioned the stream streamid to the start of 
line line and written out string as a line of text. If streamid is omitted, the default output stream is 
used. If line (which must be a positive whole number) is omitted, the stream will not be 
repositioned before the write. If string is omitted, nothing is written to the stream.  If string is 
specified, a system-specific action is taken after it has been written to stream, to mark a new line.

The format and contents of the first parameter will depend upon the implementation and how it 
names streams. Consult implementation-specific documentation for more information.
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If string is specified, but not line, the effect is to write string to the stream, starting at the current 
write position. If line is specified, but not string, the effect is only to position the stream at the new 
position. Note that the line parameter is only legal if the stream is persistent; you can not position 
the current write position for transient streams.

If neither line nor string is specified, the standard requires that the current write position is set the 
end of the stream, and implementation specific side-effects may occur. In practice, this means that 
an implementation can use this situation to do things like closing the stream, or flushing the output. 
Consult the implementation specific documentation for more information.

Also note that the return value of this functions may be of little or no value, If just a half line is 
written, 1 may still be returned, and there are no way of finding out how much (if any) of string was
written. If string is not specified, the return value will always be 0, even if LINEOUT() was not 
able to correctly position the stream.

If it is impossible to correctly write string to the stream, the NOTREADY flag will be raised. It is not 
defined whether or not the NOTREADY flag is raised when LINEOUT() is used for positioning, and
this is not possible.

Note that if you write string to a line in the middle of the stream (i.e. line is less than the total 
number of lines in the stream), then the behavior is system and implementation specific. Some 
systems will truncate the stream after the newly written line, other will only truncate if the newly 
written line has a different length than the old line which it replaced, and yet other systems will 
overwrite and never truncate.

In general, consult your system and implementation specific documentation for more information 
about this function. You can safely assume very little about how it behaves.

LINEOUT(,'First line') '1'

LINEOUT('/tmp/file','Second line',2) '1'

LINEOUT('/tmp/file','Third line') '1'

LINEOUT('/tmp/file','Fourth line',4) '0'

LINES([streamid] [,option]) - (ANSI)
Returns 1 if there is at least one complete line remaining in the named file stream or 0 if no 
complete lines remain in the file.  A complete line is not really as complete as the name might 
indicate; a complete line is zero or more characters, followed by an End-Of-Line (EOL) marker. So,
if you have read half a line already, you still have a "complete" line left. Note that it is not defined 
what to do with a half-finished line at the end of a file. Some interpreters might interpret the End-
Of-File as an implicit EOL mark too, while others might not.

The format and contents of the stream streamid is system and implementation dependent. If 
omitted, the default input stream will be used.

The ANSI Standard has extended this function from TRL2. It allows an option:
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[C]
(Count) Returns the actual number of complete lines remaining in the stream, irrespective of
how expensive this operation is.

[N]
(Normal) Returns 1 if there is at least one complete line remaining in the file or 0 if no lines 
remain. This is the default. To maintain backwards compatibility with older releases of 
Regina, the OPTION; NOFAST_LINES_BIF_DEFAULT can be used to make the default 
option behave as though LINES(streamid,'C') was specified.

LINES will only return 0 or 1 for all transient streams, as the interpreter can not reposition in these 
files, and can therefore not count the number of remaining lines.

As a result, defensive programming indicates that you can safely only assume that this function will
return either 0 or a non-zero result. If you want to use the non-zero result to more than just an 
indicator on whether more lines are available, you must check that it is larger than one. If so, you 
can safely assume that it hold the number of available lines left.

As with all the functions operating on streams, you can safely assume very little about this function,
so consult the system and implementation specific documentation.

LINES() '1' /* Maybe */

LINES() '0' /* Maybe */

LINES('/tmp/file','C') '2' /* Maybe */

LINES('/tmp/file') '1' /* Maybe */

LOWER(string [,start [,length [,pad]]]) - (REGINA)
Translates the substring of string that starts at start, and has the length length to lower case. Length 
defaults to the rest of the string. Start must be a positive whole number, while length can be any 
non-negative whole number. The default value for start is 1 and for length is the length of string.
It is not an error for start to be larger than the length of string.  If length is specified and the sum of 
length and start minus 1 is greater that the length of string, then the result will be padded with 
padchars to the specified length. The default value for padchar is the <space> character.

 If a specific locale is set (via the -l switch), then the string is set to the correct lowercase values 
based on that locale.

LOWER('One Fine Day') 'one fine day'

LOWER('FRED', 2 ) 'Fred'

LOWER('FRED', 3, 1 ) 'FreD'

LOWER('FRED',1, 10, '*' ) 'fred******'

MAKEBUF() - (CMS)
Creates a new buffer on the stack, at the current top of the stack.  Each new buffer will be assigned 
a number; the first buffer being assigned the number 1. A new buffer will be assigned a number 
which is one higher than the currently highest number of any buffer on the stack. In practice, this 
means that the buffers are numbered, with the bottom-most having the number 1 and the topmost 
having a number which value is identical to the number of buffers currently in the stack.
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The value returned from this function is the number assigned to the newly created buffer. The 
assigned number will be one more than the number of buffers already in the stack, so the numbers 
will be "recycled". Thus, the assigned numbers will not necessarily be in sequence.

MAKEBUF() 1 /* if no buffers existed */

MAKEBUF() 6 /* if 5 buffers existed */

MAX(number1 [,number2] ...) - (ANSI)
Takes any positive number of parameters, and will return the parameter that had the highest 
numerical value. The parameters may be any valid Rexx number. The number that is returned, is 
normalized according to the current NUMERIC settings, so the result need not be strictly equal to 
any of the parameters.

Actually, the standard says that the value returned is the first number in the parameter list which is 
equal to the result of adding a positive number or zero to any of the other parameters. Note that this 
definition opens for "strange" results if you are brave enough to play around with the settings of 
NUMERIC FUZZ.

MAX(1,2,3,5,4) '5'

MAX(6) '6'

MAX(-4,.001E3,4) '4'

MAX(1,2,05.0,4) '5.0'

MIN(number [,number] ...) - (ANSI)
Like MAX(), except that the lowest numerical value is returned. For more information, see MAX().

MIN(5,4,3,1,2) '1'

MIN(6) '6'

MIN(-4,.001E3,4) '-4'

MIN(1,2,05.0E-1,4) '0.50'

OPEN(file, filename, ['Append'|'Read'|'Write']) - (AREXX)
Opens a file for the specified operation. The file argument defines the logical name by which the 
file will be referenced. The filename is the external name of the file, and may include any portions 
of a full file path.  
The function returns a boolean value that indicates whether the operation was successful. There is 
no limit to the number of files that can be open simultaneously, and all open files are closed 
automatically when the program exits.
Use OPTIONS AREXX_SEMANTICS for the AREXX behaviour to be executed.
See also CLOSE(), READ(), WRITE().

OPEN('myfile','c:\temp\aa.txt','R') '1'

OPEN('infile','/tmp/fred.txt') '1'
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OVERLAY(string1, string2 [,[start] [,[length] [,padchar]]]) - 
(ANSI)
Returns a copy of string2, totally or partially overwritten by string1. If these are the only arguments,
the overwriting starts at the first character in string2.

If start is specified, the first character in string1 overwrites character number start in string2. Start 
must be a positive whole number, and defaults to 1, i.e. the first character of string1.  If the start 
position is to the right of the end of string2, then string2 is padded at the right hand end to make it 
start-1 characters long, before string1 is added.

If length is specified, then string2 will be stripped or padded at the right hand end to match the 
specified length. For padding (of both strings) padchar will be used, or <space> if padchar is 
unspecified. Length must be non-negative, and defaults to the length of string1.

OVERLAY('NEW','old-value') 'NEW-value'

OVERLAY('NEW','old-value',4) 'oldNEWlue'

OVERLAY('NEW','old-value',4,5) 'oldNEW  e'

OVERLAY('NEW','old-value',4,5,'*') 'oldNEW**e'

OVERLAY('NEW','old-value',4,2) 'oldNEalue'

OVERLAY('NEW','old-value',9) 'old-valuNEW'

OVERLAY('NEW','old-value',12) 'old-value  NEW'

OVERLAY('NEW','old-value',12,,'*') 'old-value**NEW'

OVERLAY('NEW','old-value',12,5,'*') 'old-value**NEW**'

POOLID() - (REGINA)
Returns the current call level for the current procedure.

POOLID() '1' /* top level */

POOLID() '6' /* 6th level call nesting */

POPEN(command [,stem.]) - (REGINA)
Runs the operating system command. If the optional stem. is supplied all output from the command 
is placed in the specified stem variable as a Rexx array. Note that only the command's stdout can be
captured. 
This command is now deprecated.  ADDRESS WITH can do the same thing, and can also capture 
the command's stderr.

POPEN('ls -l', 'lists.') /* LISTS. stem has list */

ADDRESS SYSTEM 'ls -l' WITH OUTPUT
STEM LISTS.

/* same as above */

POS(needle, haystack [,start]) - (ANSI)
Seeks for an occurrence of the string needle in the string haystack. If needle is not found, then 0 is 
returned.  Else, the position in haystack of the first character in the part that matched is returned, 
which will be a positive whole number.  If start (which must be a positive whole number) is 
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specified, the search for needle will start at position start in haystack.

POS('be','to be or not to be') 4

POS('to','to be or not to be',10) 14

POS('is','to be or not to be') 0

POS('to','to be or not to be',18) 0

PUTENV(environmentvar=[value]) - (REGINA)
Sets the value of  the named system environment variable or deletes it. The existing value is 
returned if the environment variable has a value or if this environment variable is not defined, a 
nullstring is returned.
If no value is supplied, the system environment variable is deleted. This is the only mechanism 
available to delete a system environment variable.

PUTENV('FRED=hello') '' /* If unset */

PUTENV('FRED=') 'hello' /* variable deleted */

QUALIFY([streamid]) - (ANSI)
Returns a name for the streamid.  The two names are currently associated with the same resource 
and the result of this function may be more persistently associated with that resource.

QUALIFY('../mypath/fred.the') '/home/mark/mypath/fred.the'

QUEUED() - (ANSI)
Returns the number of lines currently in the external data queue (the "stack"). Note that the stack is 
a concept external to Rexx, this function may depend on the implementation and system Consult 
the system specific documentation for more information.

QUEUED() '0' /* Maybe */

QUEUED() '42' /* Maybe */

RANDOM(max) - (ANSI)

RANDOM([min] [,[max] [,seed]]) - (ANSI)
Returns a pseudo-random whole number. If called with only the first parameter, the first format will 
be used, and the number returned will be in the range 0 to the value of the first parameter, inclusive.
Then the parameter max must be a non-negative whole number, not greater than 100000.

If called with more than one parameter, or with one parameter, which is not the first, the second 
format will be used. Then min and max must be non-negative whole numbers, and max can not be 
less than min, and the difference max-min can not be more than 100000. If one or both of them is 
unspecified, the default for min is 0, and the default for max is 999. 

If seed is specified; (it must be a non-negative whole number) you may control which numbers the 
pseudo-random algorithm will generate. If you do not specify it, it will be set to some "random" 
value at the first call to RANDOM() (typically a function of the time). When specifying seed, it will 
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effect the result of the current call to RANDOM().

The standard does not require that a specific method is to be used for generating the pseudo-random
numbers, so the reproducibility can only be guaranteed as long as you use the same implementation 
on the same machine, using the same operating system. If any of these change, a given seed may 
produce a different sequence of pseudo-random numbers.

Note that depending on the implementation, some numbers might have a slightly increased chance 
of turning up than other. If the Rexx implementation uses a 32 bit pseudo-random generator 
provided by the operating system and returns the remainder after integer dividing it by the 
difference of min and max, low numbers are favored if the 2^32 is not a multiple of that difference.  
Supposing that the call is RANDOM(100000) and the pseudo-random generator generates any 32 
bit number with equal chance, the change of getting a number in the range 0-67296 is about 
0.000010000076, while the changes of getting a number in the range 67297-100000 is about 
0.000009999843.

A much worse problem with pseudo-random numbers are that they sometimes do not tend to be 
random at all. Under one operating system (name withheld to protect the guilty), the system's 
pseudo-random routine returned numbers where the last binary digit alternated between 0 and 1. On
that machine, RANDOM(1) would return the series 0, 1, 0, 1, 0, 1, 0, 1 etc., which is hardly random 
at all. You should therefore never trust the pseudo-random routine to give you random numbers.

Note that due to the special syntax, there is a big difference between using RANDOM(10) and 
RANDOM(10,). The former will give a pseudo-random number in the range 0-10, while the latter 
will give a pseudo-random number in the range 10-999.

Also note that it is not clear whether the standard allows min to be equal to max, so to program 
compatible, make sure that max is always larger than min.

RANDOM() '123' /*Between 0 and 999 */

RANDOM(10) '5' /*Between 0 and 10 */

RANDOM(,10) '3' /*Between 0 and 10 */

RANDOM(20,30) '27' /*Between 20 and 30 */

RANDOM(,,12345) '765' /*Between 0 and 999, and sets seed */

RANDU([seed]) - (AREXX)
Returns a uniformly-distributed pseudo random number between 0 and 1. The number of digits of 
precision in the result is always equal to the current NUMERIC DIGITS setting. With the choice of
suitable scaling and translation values, RANDU()can be used to generate pseudo random numbers 
on an arbitrary interval.
The optional seed argument is used to initialize the internal state of the random number generator.  
See also RANDOM()

RANDU() '0.371902021'

RANDU(45) '0.873' /*numeric digits 3*/
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READCH(file, length) - (AREXX)
Reads the specified number of characters from the given logical file and returns them. The length of
the returned string is the actual number of characters read,and may be less than the requested length 
if, for example, the end-of-file was reached.
See also READLN()

READCH('infile',10) 'a string o'

READLN(file) - (AREXX)
Reads characters from the given logical file into a string until a "newline" character is found. The 
returned string does not include the "newline".
See also READCH()

READLN('infile') 'a string of chars'

REVERSE(string) - (ANSI)
Returns a string of the same length as string, but having the order of the characters reversed.

REVERSE('FooBar') 'raBooF'

REVERSE('  Foo Bar') 'raB ooF  '

REVERSE('3.14159') '95141.3'

RIGHT(string, length[,padchar]) - (ANSI)
Returns the length rightmost characters in string. If length (which must be a non-negative whole 
number) is greater than the length of string the result is padded on the left with the necessary 
number of padchars to make it as long as length specifies. Padchar defaults to <space>.

RIGHT('Foo bar',5) 'o bar'

RIGHT('Foo bar',3) 'bar'

RIGHT('Foo bar',10) '   Foo bar'

RIGHT('Foo bar',10,'*') ''***Foo bar'

RXFUNCADD(externalname, library, internalname) - (SAA)
Registers the internalname in library as an external function callable from with the current program
by referencing externalname.  library is a Rexx external function package in the format of shared 
library or dynamic link library (DLL). library and internalname are case-sensitive.  library is the 
base name of the shared library or dynamic link library. On platforms that support DLLs, the full 
name of the external function package is library.dll.  On Unix environments, the full name of the 
shared library is liblibrary.a (AIX), liblibrary.sl (HPUX) or liblibrary.so (most other Unixes).  
External function packages are searched for in the location where shared libraries or DLLs are 
normally found by the operating system. DLLs are normally located in directories specified in the 
PATH or LIBPATH environment variables.  Shared libraries are normally searched for in 
LD_LIBRARY_PATH or LIBPATH environment variables.

This function returns 0 if the function is registered successfully; non-zero otherwise.
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RXFUNCADD('SQLLoadFuncs','rexxsql','SQLLoadFuncs') 0

RXFUNCDROP(externalname) - (SAA)
Removes the specified externalname from the list of external functions available to be called. This 
function returns 0 if the function was successfully dropped.

RXFUNCDROP('SQLLoadFuncs') 0

RXFUNCERRMSG() - (REGINA)
Returns the error message associated with the last call to RXFUNCADD. This function is generally 
used immediately after a failed call to RXFUNCADD to determine why it failed.

RXFUNCERRMSG() 'rexxsql.dll not found' /* Maybe */

RXFUNCQUERY(externalname) - (SAA)
Returns 0 if the externalname is already registered, or 1 if the externalname is not registered.

RXFUNCQUERY('SQLLoadFuncs') 1 /* Maybe */

RXQUEUE(command [,queue|timeout]) - (OS/2)
This function interfaces to the Regina internal or external queue mechanism. If OPTIONS 
INTERNAL_QUEUES is set, all operations on queues are internal to the interpreter. 

[C]
(Create) Request the interpreter or rxstack to create a new named queue. If the queue name 
already exists, a new unique queue name is generated.  The name of the queue that was 
created (either the specified queue or the system-generated queue) is returned.  All queue 
names are case-insensitive; i.e. the queue name FRED and fred are the same.

[D]
(Delete) Deletes the specified queue. The default queue; SESSION becomes the current 
queue.

[G]
(Get) Returns the current queue name.

[S]
(Set) Sets the current queue name to that queue specified.  The previously current queue is 
returned. It is valid to set a queue name to a queue that has not been created.

[T]
(Timeout) Sets the timeout period (in milliseconds) to wait for something to appear on the 
current queue (as set by RXQUEUE('S', queue) ). By default, when a line is read from a 
queue with a PULL command, it either returns immediately with the top line in the stack, or 
it will wait for a line to be entered by the user via the process' stdin.  If 0 is specified, Regina
will wait forever for a line to be ready on the stack. 
An error will result if an attempt is made to set a timeout on an internal queue; timeouts only
make sense on external queues (ie those with a '@' in them that use the rxstack process).
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RXQUEUE('Create') 'S0738280'

RXQUEUE('Create','fred') 'FRED'

RXQUEUE('Create', 'fred') 'S88381'

RXQUEUE('Get') 'S88381'

RXQUEUE('Delete','fred') 'SESSION'

RXQUEUE('Set','fred') 'SESSION'

RXQUEUE('Timeout',1000) '0'

SEEK(file, offset, ['Begin'|'Current'|'End') - (AREXX)
Moves to a new position in the given logical file, specified as an offset from an anchor position. The
default anchor is Current. The returned value is the new position relative to the start of the file.  

SEEK('infile',10,'B') '10'

SEEK('infile',0,'E') '356' /* file length */

SHOW(option, [name], [pad]) - (AREXX)
Returns the names in the resource list specified by the option argument, or tests to see whether an 
entry with the specified name is available. The currently implemented options keywords are Clip, 
Files, Libraries, and Ports, which are described below.  
Clip. Examines the names in the Clip List.  
Files. Examines the names of the currently open logical file names.  
Libraries. Examines the names in the Library List,which are either function libraries or function 
hosts.  
Ports. Examine the names in the system Ports List.  
If the name argument is omitted, the function returns a string with the resource names separated by 
a blank space or the pad character,if one was supplied. If the name argument is given, the returned 
boolean value indicates whether the name was found in the resource list. The name entries are case-
sensitive.
Only the Files option is valid on all platforms. All other values for option are only applicable to the 
Amiga and AROS ports.

SIGN(number) - (ANSI)
Returns either -1, 0 or 1, depending on whether number is negative, zero, or positive, respectively. 
Number must be a valid Rexx number, and are normalized according to the current settings of 
NUMERIC before comparison.

SIGN(-12) '-1'

SIGN(42) '1'

SIGN(-0.00000012) '-1'

SIGN(0.000) '0'

SIGN(-0.0) '0'

SLEEP(seconds) - (CMS)
Pauses for the supplied number of seconds.
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SLEEP(5) /* sleeps for 5 seconds */

SOURCELINE([lineno]) - (ANSI)
If lineno (which must be a positive whole number) is specified, this function will return a string 
containing a copy of the Rexx script source code on that line. If lineno is greater than the number of
lines in the Rexx script source code, an error is reported.

If lineno is unspecified, the number of lines in the Rexx script source code is returned.

Note that from Rexx language level 3.50 to 4.00, the requirements of this function were relaxed to 
simplify execution when the source code is not available (compiled or pre-parsed Rexx). An 
implementation might make two simplifications: to return 0 if called without a parameter. If so, any
call to SOURCELINE() with a parameter will generate an error. The other simplification is to 
return a nullstring for any call to SOURCELINE() with a legal parameter.

Note that the code executed by the INTERPRET clause can not be retrieved by SOURCELINE().

SOURCELINE() '42' /*Maybe */

SOURCELINE(1) '/* This Rexx script will ... */'

SOURCELINE(23) 'var = 12' /*Maybe */'

SPACE(string[, [length] [,padchar]]) - (ANSI)
With only one parameter string is returned, stripped of any trailing or leading blanks, and any 
consecutive blanks inside string translated to a single <space> character (or padchar if specified).

Length must be a non-negative whole number. If specified, consecutive blanks within string are 
replaced by exactly length instances of <space> (or padchar if specified).  However, padchar will 
only be used in the output string, in the input string, blanks will still be the "magic" characters. As a 
consequence, if there exist any padchars in string, they will remain untouched and will not affect 
the spacing.

SPACE(' Foo  bar ') 'Foo bar'

SPACE(' Foo  bar ',2) 'Foo  bar'

SPACE(' Foo  bar ',,'*') 'Foo*bar'

SPACE('Foo bar',3, '-') 'Foo---bar'

SPACE('Foo  bar',,'o') 'Fooobar'

STATE(streamid) - (CMS)
Returns 0 if the streamid exists, or 1 if it does not. Use STREAM(streamid, 'C', 'QUERY EXISTS') 
for portability.

STORAGE([address], [string], [length], [pad]) - (AREXX)
Calling STORAGE() with no arguments returns the available system memory. If the address 
argument is given, it must be a 4-byte string,and the function copies data from the optional string 
into the indicated memory area. The length parameter specifies the maximum number of bytes to be
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copied,and defaults to the length of the string. If the specified length is longer than the string,the 
remaining area is filled with the pad character or nulls('00'x.)
The returned value is the previous contents of the memory area. This can be used in a subsequent 
call to restore the original contents.
Caution is advised in using this function. Any area of memory can be overwritten,possibly 
causing a system crash.

STORAGE() '248400'

STORAGE('0004 0000'x,'The answer') 'question' /* maybe */

STREAM(streamid[,option[,command]]) (ANSI)
This function was added to Rexx in language level 4.00. It provides a general mechanism for doing 
operations on streams. However, very little is specified about how the internal of this function 
should work, so you should consult the implementation specific documentation for more 
information.

The streamid identifies a stream. The actual contents and format of this string is implementation 
dependent.

The option selects one of several operations which STREAM() is to perform. The possible 
operations are:

[C]
(Command) If this option is selected, a third parameter must be present, command, which is 
the command to be performed on the stream. The contents of command is implementation 
dependent. For Regina,  the valid commands follow. Commands consist of one or more 
space separated words.

[D]
(Description) Returns a description of the state of streamid. The return value is 
implementation dependent.

[S]
(Status) Returns a state which describes the state of streamid. The standard requires that it is 
one of the following: ERROR, NOTREADY, READY and UNKNOWN. The meaning of these 
are described in the chapter; Stream Input and Output.

Note that the options Description and Status really have the same function, but that Status
in general is implementation independent, while Description is implementation dependent.

The command specifies the command to be performed on streamid. The possible operations are:

[READ]
Open for read access. The file pointer will be positioned at the start of the file, and only read
operations are allowed. This command is Regina-specific; use OPEN READ in its place.

[WRITE]
Open for write access and position the current write position at the end of the file.  An error 
is returned if it was not possible to get appropriate access. This command is Regina-specific;
use OPEN WRITE in its place.

111



[APPEND]
Open for append access and position the current write position at the end of the file.  An 
error is returned if it was not possible to get appropriate access. This command is Regina-
specific; use OPEN WRITE APPEND in its place.

[UPDATE]
Open for append access and position the current write position at the end of the file.  An 
error is returned if it was not possible to get appropriate access. This command is Regina-
specific; use OPEN BOTH in its place.

[CREATE]
Open for write access and position the current write position at the start of the file.  An error 
is returned if it was not possible to get appropriate access. This command is Regina-specific;
use OPEN WRITE REPLACE in its place.

[CLOSE]
Close the stream, flushing any pending writes. An error is returned if it was not possible to 
get appropriate access.

[FLUSH]
Flush any pending write to the stream. An error is returned if it was not possible to get 
appropriate access.

[STATUS]
Returns status information about the stream in human readable form that Regina stores 
about the stream.

[FSTAT]
Returns status information from the operating system about the stream. This consists of at 
least  8 words:

Device Number Under DOS, Win32, OS/2, this represents the disk number, with 
0 being Drive A.

Inode Number Under DOS, Win32, OS/2, this is zero.
Permissions User/Group/Other permissions mask. Consists of 3 octal 

numbers with 4 representing read, 2 representing write, and 1 
representing execute. Therefore a value of 750 is 
read/write/execute for user, read/execute for group, and no 
permissions for other.

Number Links Under DOS, Win32, OS/2, this will always be 1. 
User Name The owner of the stream. Under DOS, Win32, OS/2, this will 

always be “USER”.
Group Name The group owner of the stream. Under DOS, Win32, OS/2, this 

will always be “GROUP”.
Size Size of stream in bytes.
Stream Type One or more of the following:

RegularFile a normal file.
Directory a directory.
BlockSpecial a block special file.
FIFO usually a pipe.
SymbolicLink a symbolic link. If the stream is a symbolic link, 
the the details returned are details about the link, not the file the 
link points to.
Socket a socket
SpecialName a named special file.
CharacterSpecial a character special file.

112



[RESET]
Resets the stream after an error.  Only streams that are resettable can be reset.

[READABLE]
Returns 1 if the stream is readable by the user or 0 otherwise.

[WRITABLE]
Returns 1 if the stream is writable by the user or 0 otherwise.

[EXECUTABLE]
Returns 1 if the stream is executable by the user or 0 otherwise.

[QUERY]
Returns information about the named stream.  If the named stream does not exists, then the 
empty string is returned. This command is further broken down into the following sub-
commands:

DATETIME returns the date and time of last modification of the stream in 
Rexx US Date format; MM-DD-YY HH:MM:SS.

EXISTS returns the fully-qualified file name of the specified stream.
HANDLE returns the internal file handle of the stream.  This will only 

return a valid value if the stream was opened explicitly or 
implicitly by Regina.

SEEK READ CHAR returns the current read position of the open stream expressed in 
characters.

SEEK READ LINE returns the current read position of the open stream expressed in 
lines.

SEEK WRITE CHAR returns the current write position of the open stream expressed in
characters.

SEEK WRITE LINE returns the current write position of the open stream expressed in
lines.

SEEK SYS returns the current read position of the open stream as the 
operating reports it.  This is expressed in characters.

SIZE returns the size, expressed in characters, of the persistent stream.
STREAMTYPE returns the type of the stream.  One of TRANSIENT, 

PERSISTENT or UNKNOWN is returned.
TIMESTAMP returns the date and time of last modification of the stream.  The 

format of the string returned is YYYY-MM-DD HH:MM:SS.
CREATETIME returns the date and time the stream was created in time_t 

format. If the file system does not support create time, this will 
return the stream’s last modification time.

MODIFYTIME returns the date and time the stream was last modified in time_t 
format.

ACCESSTIME returns the date and time the stream was last accessed in time_t 
format. If the file system does not support access time, this will 
return the stream’s last modification time.

You can use POSITION in place of SEEK in the above options. 
[OPEN]

Opens the stream in the optional mode specified. If no optional mode is specified, the 
default is OPEN BOTH.

READ The file pointer will be positioned at the start of the file, and 
only read operations are allowed.

WRITE Open for write access and position the current write pointer at 
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the end of the file.  On platforms where it is not possible to open
a file for write without also allowing reads, the read pointer will 
be positioned at the start of the file. An error is returned if it was 
not possible to get appropriate access.

BOTH Open for read and write access. Position the current read pointer 
at the start of the file, and the current write pointer at the end of 
the file.  An error is returned if it was not possible to get 
appropriate access.

WRITE APPEND Open for write access and position the write pointer at the end of
the file.  On platforms where it is not possible to open a file for 
write without also allowing reads, the read pointer will be 
positioned at the start of the file.

WRITE REPLACE Open for write access and position the current write position at 
the start of the file.  On platforms where it is not possible to 
open a file for write without also allowing reads, the read pointer
will be positioned at the start of the file. This operation will 
clear the contents of the file.  An error is returned if it was not 
possible to get appropriate access.

BOTH APPEND Open for read and write access. Position the current read 
position at the start of the file, and the current write position at 
the end of the file.  An error is returned if it was not possible to 
get appropriate access.

BOTH REPLACE Open for read and write access. Position both the current read 
and write pointers at the start of the file.  An error is returned if 
it was not possible to get appropriate access.

[SEEK position READ|WRITE [CHAR|LINE]]
Positions the file's read or write pointer in the file to the specified position. SEEK is a 
synonym for  POSITION.

position A position can be of the following forms. [relative]offset.
relative can be one of:

= The file pointer is moved to the specified offset 
relative to the start of the file. This is the 

default.
< The file pointer is moved to the specified offset 

relative to the end of the file.
- The file pointer is moved backwards relative to 

the current position.
+ The file pointer is moved forwards relative to the 

current position.

offset is a positive whole number. 
READ The read file pointer will be positioned.
WRITE The write file pointer is positioned.
CHAR The offset specified in position above is in terms of characters.
LINE The offset specified in position above is in terms of lines.

Assume a file; '/home/mark/myfile' last changed March 30th 2002 at 15:07:56, with 100 lines, each 
line 10 characters long, and the following command executed in sequence.
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STREAM('myfile','C','QUERY EXISTS') '/home/mark/myfile'

STREAM('myfile','C','QUERY SIZE') 1100

STREAM('myfile','C','QUERY TIMESTAMP') 2002-03-30 15:07:56

STREAM('myfile','C','QUERY DATETIME') 03-30-02 15:07:56

STREAM('myfile','D')

STREAM('myfile','S') UNKNOWN

STREAM('myfile','C','QUERY SEEK READ')

STREAM('myfile','C','OPEN READ') READY:

STREAM('myfile','D')

STREAM('myfile','S') READY

STREAM('myfile','C','QUERY SEEK READ') 1

STREAM('myfile','C','CLOSE') UNKNOWN

STREAM('myfile','C','STATUS')

STREAM('myfile','C','FSTAT') 773 35006 064 1 mark 
mark 1100 RegularFile

STREAM('myfile','C','READABLE') 1

STREAM('myfile','C','WRITABLE') 1

STREAM('myfile','C','EXECUTABLE') 0

STRIP(string [,[option] [,char]]) - (ANSI)
Returns string after possibly stripping it of any number of leading and/or trailing characters. The 
default action is to strip off both leading and trailing blanks. If char (which must be a string 
containing exactly one character) is specified, that character will be stripped off instead of blanks. 
Inter-word blanks (or chars if defined, that are not leading of trailing) are untouched.

If option is specified, it will define what to strip. The possible values for option are:

[L]
(Leading) Only strip off leading blanks, or chars if specified.

[T]
(Trailing) Only strip off trailing blanks, or chars if specified.

[B]
(Both) Combine the effect of L and T, that is, strip off both leading and trailing blanks, or 
chars if it is specified. This is the default action.

STRIP(' Foo  bar ') 'Foo  bar'

STRIP(' Foo  bar ','L') 'Foo  bar '

STRIP(' Foo  bar ','t') ' Foo  bar'

STRIP(' Foo  bar ','Both') 'Foo  bar'

STRIP('0.1234500',,'0') '.12345'

STRIP('0.1234500 ',,'0') '.1234500 '
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SUBSTR(string, start [,length [,padchar]]) - (ANSI)
Returns the substring of string that starts at start, and has the length length. Length defaults to the 
rest of the string. Start must be a positive whole, while length can be any non-negative whole 
number.

It is not an error for start to be larger than the length of string.  If length is specified and the sum of 
length and start minus 1 is greater that the length of string, then the result will be padded with 
padchars to the specified length. The default value for padchar is the <space> character.

SUBSTR('Foo bar',3) 'o bar'

SUBSTR('Foo bar',3,3) 'o b'

SUBSTR('Foo bar',4,6) ' bar  '

SUBSTR('Foo bar',4,6,'*') ' bar**'

SUBSTR('Foo bar',9,4,'*') '****'

SUBWORD(string, start [,length]) - (ANSI)
Returns the part of string that starts at blank delimited word start (which must be a positive whole 
number). If length (which must be a non-negative whole number) is specified, that number of words
are returned. The default value for length is the rest of the string.

It is not an error to specify length to refer to more words than string contains, or for start and length
together to specify more words than string holds. The result string will be stripped of any leading 
and trailing blanks, but inter-word blanks will be preserved as is.

SUBWORD('To be or not  to be',4) 'not  to be'

SUBWORD('To be or not  to be',4,2) 'not  to'

SUBWORD('To be or not  to be',4,5) 'not  to be'

SUBWORD('To be or not  to be',1,3) 'To be or'

SYMBOL(string) - (ANSI)
Checks if the string is a valid symbol (a positive number or a possible variable name), and returns a 
three letter string indicating the result of that check.  If string is a symbol, and names a currently set 
variable, VAR is returned, if string is a legal symbol name, but has not a been given a value (or is a 
constant symbol, which can not be used as a variable name), LIT is returned to signify that it is a 
literal.  Else, if string is not a legal symbol name the string BAD is returned.

Watch out for the effect of "double expansion". string is interpreted as an expression evaluating 
naming the symbol to be checked, so you might have to quote the parameter.

SYMBOL('Foobar') 'VAR' /* Maybe */

SYMBOL('Foo bar') 'BAD'

SYMBOL('Foo.Foo bar') 'BAD'

SYMBOL('3.14') 'LIT'

SYMBOL('.Foo->bar') 'BAD'
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TIME([option_out [,time [,option_in]]]) - (ANSI)
Returns a string containing information about the local time. To get the time in a particular format, 
an option_out can be specified. The default option_out is Normal. The meaning of the possible 
options are:

[C]
(Civil) Returns the time in civil format.  The return value might be "hh:mmXX", where XX 
are either am or pm. The hh part will be stripped of any leading zeros, and will be in the 
range 1-12 inclusive. (ANSI)

[E]
(Elapsed) Returns the time elapsed in seconds since the internal stopwatch was started.  The 
result will not have any leading zeros or blanks.  The output will be a floating point number 
with six digits after the decimal point. (ANSI)

[H]
(Hours) Returns the number of complete hours that have passed since last midnight in the 
form "hh". The output will have no leading zeros, and will be in the range 0-23. (ANSI)

[J]
(Job) Returns the number of seconds of CPU time the currently running process has 
currently used. The output will have no leading zeros, and will have 6 decimal places. 
(Regina Extension)

[L]
(Long) Returns the exact time, down to the microsecond. This is called the long format. The 
output might be "hh:mm:ss.mmmmmm".  Be aware that most computers do not have a 
clock of that accuracy, so the actual granularity you can expect, will be about a few 
milliseconds. The hh, mm and ss parts will be identical to what is returned by the options H,
M and S respectively, except that each part will have leading zeros as indicated by the 
format. (ANSI)

[M]
(Minutes) Returns the number of complete minutes since midnight, in a format having no 
leading spaces or zeros. (ANSI)

[N]
(Normal) The output format is "hh:mm:ss", and is padded with zeros if needed. The hh, 
mm and ss will contain the hours, minutes and seconds, respectively. Each part will be 
padded with leading zeros to make it double-digit. (ANSI)

[O]
(Offset) Returns the number of microseconds between UTC time and local time. Where 
local daylight savings is in effect, this offset may be adjusted by the addition of 1 hour. (Not 
all systems reliably provide dayight savings time indication). This option was added with the
ANSI Standard. (ANSI)

[R]
(Reset) Returns the value of the internal stopwatch just like the E option, and using the same
format. In addition, it will reset the stopwatch to zero after its contents has been read. 
(ANSI)

[S]
(Seconds) Returns the number of complete seconds since midnight, in a format having no 
leading spaces or zeros. (ANSI)

[T]
(time_t) Returns the current UTC date/time in UNIX time_t format.  time_t is the number of 
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seconds since January 1st 1970. It always represents the UTC date/time, so any conversion 
from another time format (which is always assumed to be local time) will result in a time_t  
value offset by time zone. (Regina Extension)

Note that the time is never rounded, only truncated. As shown in the examples below, the seconds 
do not get rounded upwards, even though the decimal part implies that they are closer to 59 than to 
58. The same applies for the minutes, which are closer to 33 than to 32, but is truncated to 32.
None of the formats will have leading or trailing spaces.

Assuming that the time is exactly 14:32:58.987654 on March 30th 2002, the following will be true:

TIME('C') '2:32pm'

TIME('E') '0.01200' /* Maybe */

TIME('H') '14'

TIME('L') '14:32:58.987654'

TIME('M') '872'

TIME('N') '14:32:58'

TIME('R') '0.430221' /* Maybe */

TIME('S') '52378'

TIME('O') 36000000000 /* East Coast Aus */

TIME('J) 5.342000 /* Maybe */

If the time option is specified, the function provides for time conversions.  The optional option_in 
specifies the format in which time is supplied.  The possible values for option_in are:  CHLMNST.
The default value for option_in is N.
When a time is converted to format T, the returned value is the input time for the current date.

TIME('C','11:27:21') '11:27am'

TIME('N','11:27am','C') '11:27:00'

TIME('T') 1256475220 /* Maybe */

The time conversion capability of the TIME BIF was introduced with the ANSI standard.

TRACE([setting]) - (ANSI)
Returns the current value of the trace setting. If the string setting is specified, it will be used as the 
new setting for tracing, after the old value have be recorded for the return value. Note that the 
setting is not an option, but may be any of the trace settings that can be specified to the clause 
TRACE, except that the numeric variant is not allowed with TRACE(). In practice, this can be a 
word, of which only the first letter counts, optionally preceded by a question mark.

TRACE() 'C' /* Maybe */

TRACE('N') 'C'

TRACE('?') 'N'
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TRANSLATE(string [,[tableout] [,[tablein] [,padchar]]]) - (ANSI)
Performs a translation on the characters in string. As a special case, if neither tablein nor tableout is 
specified, it will translate string from lower case to upper case. Note that this operation may depend
on the language chosen, if your interpreter supports national character sets.

Two translation tables might be specified as the strings tablein and tableout.  If one or both of the 
tables are specified, each character in string that exists in tablein is translated to the character in 
tableout that occupies the same position as the character did in tablein. The tablein defaults to the 
whole character set (all 256) in numeric sequence, while tableout defaults to an empty set. 
Characters not in tablein are left unchanged.

If tableout is larger than tablein, the extra entries are ignored. If it is smaller than tablein it is 
padded with padchar to the correct length. Padchar defaults to <space>.

If a character occurs more than once in tablein, only the first occurrence will matter.

TRANSLATE('FooBar') 'FOOBAR'

TRANSLATE('FooBar','ABFORabfor','abforABFOR') 'fOObAR'

TRANSLATE('FooBar','abfor') '      '

TRANSLATE('FooBar','abfor',,'#') '######'

TRIM(string) - (AREXX)
Removes trailing blanks from the string argument.  A more portable option is to use the Trailing 
option of the STRIP BIF.

TRIM(' abc ') ' abc'

TRUNC(number [,length]) - (ANSI)
Returns number truncated to the number of decimals specified by length.  Length defaults to 0, that 
is return an whole number with no decimal part.

The decimal point will only be present if the is a non-empty decimal part, i.e. length is non-zero. 
The number will always be returned in simple form, never exponential form, no matter what the 
current settings of NUMERIC might be. If length specifies more decimals than number has, extra 
zeros are appended. If length specifies less decimals than number has, the number is truncated. Note
that number is never rounded, except for the rounding that might take place during normalization.

TRUNC(12.34) '12'

TRUNC(12.99) '12'

TRUNC(12.34,4) '12.3400'

TRUNC(12.3456,2) '12.34'

UNAME([option]) - (REGINA)
Returns details about the current platform. This function is basically a wrapper for the Unix 
command; uname.  Valid values for option are:
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[A]
(All) The default. Returns a string with the all following option values. Equivalent to:
UNAME('S') UNAME('N') UNAME('R') UNAME('V') UNAME('M').

[S]
(System) The name of the operating system.

[N]
(Nodename) The name of the machine.

[R]
(Release) The release of the operating system.

[V]
(Version) The version of the operating system.

[M]
(Machine) The machine's hardware type.

Example running Linux Redhat 6.1 on 'boojum', Athalon K7

UNAME('S') Linux

UNAME('N') boojum

UNAME('R') 2.2.12.-20

UNAME('V') #1 Mon Sep 27 10:40:35 EDT 1999

UNAME('M') i686

Example running Windows NT 4.0 on 'VM_NT',  Intel Pentium

UNAME('S') WINNT

UNAME('N') VM_NT

UNAME('R') 0

UNAME('V') 4

UNAME('M') i586

UNIXERROR(errorno) - (REGINA)
This function returns the string associated with the errno error number that errorno specifies. 
When some UNIX interface function returns an error, it really is a reference to an error message 
which can be obtained through UNIXERROR.

This function is just an interface to the strerror() function call in UNIX, and the actual error 
messages might differ with the operating system.

This function is now obsolete, instead you should use:

ERRORTEXT(100 + errorno)

UPPER(string [,start [,length [,pad]]]) – (AREXX/REGINA)
Translates the substring of string that starts at start, and has the length length to upper case. Length 
defaults to the rest of the string. Start must be a positive whole number, while length can be any 
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non-negative whole number. The default value for start is 1 and for length is the length of string.

It is not an error for start to be larger than the length of string.  If length is specified and the sum of 
length and start minus 1 is greater that the length of string, then the result will be padded with 
padchars to the specified length. The default value for padchar is the <space> character.

If a specific locale is set (via the -l switch), then the string is set to the correct uppercase values 
based on that locale.

While this BIF is an AREXX BIF, it is not necessary to have OPTIONS AREXX_BIFS set to use it.
The optional arguments are Regina extensions.

UPPER('One Fine Day') 'ONE FINE DAY'

UPPER('fred', 2 ) 'fRED'

UPPER('fred', 1, 1 ) 'Fred'

UPPER('fred',1, 10, '*' ) 'FRED******'

USERID() - (REGINA)
Returns the name of the current user.  A meaningful name will only be returned on those platforms 
that support multiple users, otherwise an empty string is returned.

USERID() 'mark' /* Maybe */

VALUE(symbol [,[value], [pool]]) - (ANSI)
This function expects as first parameter string symbol, which names an existing variable. The result 
returned from the function is the value of that variable. If symbol does not name an existing 
variable, the default value is returned, and the NOVALUE condition is not raised. If symbol is not a 
valid symbol name, and this function is used to access an normal Rexx variable, an error occurs. Be
aware of the "double-expansion" effect, and quote the first parameter if necessary.

If the optional second parameter is specified, the variable will be set to that value, after the old 
value has been extracted.

The optional parameter pool might be specified to select a particular pool of variables to search for 
symbol. The contents and format of pool is implementation dependent. The default is to search in 
the variables at the current procedural level in Rexx. Which pools that are available is 
implementation dependent, but typically one can set variables in application programs or in the 
operating system.

Note that if VALUE() is used to access variables in pools outside the Rexx interpreter, the 
requirements to format (a valid symbol) will not in general hold. There may be other requirements 
instead, depending on the implementation and the system. Depending on the validity of the name, 
the value, or whether the variable can be set or read, the VALUE() function can give error 
messages when accessing variables in pools other than the normal. Consult the implementation and 
system specific documentation for more information.

If it is used to access compound variables inside the interpreter the tail part of this function can take 
any expression, even expression that are not normally legal in Rexx scripts source code.
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The valid value of pool in Regina is one of ENVIRONMENT, SYSTEM, OS2ENVIRONMENT,
or CALLER; the latter refering to the most immediate, higher level poo, and the 3 former referring 
to the external environment. pool can also be a number representing the call level to search, with the
first level being 1. It is therefore possible to get and set the value of a variable in a higher call level 
procedure from the current one without the need to EXPOSE the variable. This and the POOLID() 
BIF which returns the current call level are Regina extensions.

By using this function, it is possible to perform an extra level of interpretation of a variable.

VALUE('FOO') 'bar'

VALUE('FOO','new') 'bar'

VALUE('FOO') 'new'

VALUE('USER','root','SYSTEM') 'guest'  /* If SYSTEM exists */

VALUE('USER',,'SYSTEM') 'root'

VERIFY(string, ref [,[option] [,start]]) - (ANSI)
With only the first two parameters, it will return the position of the first character in string that is 
not also a character in the string ref. If all characters in string are also in ref, it will return 0.

If option is specified, it can be one of:
[N]

(Nomatch) The result will be the position of the first character in string that does not exist in
ref, or zero if all exist in ref. This is the default option.

[M]
(Match) Reverses the search, and returns the position of the first character in string that 
exists in ref. If none exists in ref, zero is returned.

If start (which must be a positive whole number) is specified, the search will start at that position in 
string. The default value for start is 1.

VERIFY('foobar','barfo') '0'

VERIFY('foobar','barfo','M') '1'

VERIFY('foobar','fob','N') '5'

VERIFY('foobar','barf','N',3) '3'

VERIFY('foobar','barf','N',4) '0'

WORD(string, wordno) - (ANSI)
Returns the blank delimited word number wordno from the string string. If wordno (which must be 
a positive whole number) refers to a non-existing word, then a nullstring is returned. The result will 
be stripped of any blanks. See 3.1.6 for characters that delimit a word.

WORD('To be or not to be',3) 'or'

WORD('To be or not to be',4) 'not'

WORD('To be or not to be',8) ''
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WORDINDEX(string, wordno) - (ANSI)
Returns the character position of the first character of blank delimited word number wordno in 
string, which is interpreted as a string of blank delimited words.  If number (which must be a 
positive whole number) refers to a word that does not exist in string, then 0 is returned. See 3.1.6 
for characters that delimit a word.

WORDINDEX('To be or not to be',3) '7'

WORDINDEX('To be or not to be',4) '10'

WORDINDEX('To be or not to be',8) '0'

WORDLENGTH(string, wordno) - (ANSI)
Returns the number of characters in blank delimited word number number in string. If number 
(which must be a positive whole number) refers to an non-existent word, then 0 is returned. Trailing
or leading blanks do not count when calculating the length. See 3.1.6 for characters that delimit a 
word.

WORDLENGTH('To be or not to be',3) '2'

WORDLENGTH('To be or not to be',4) '3'

WORDLENGTH('To be or not to be',0) '0'

WORDPOS(phrase, string [,start]) - (ANSI)
Returns the word number in string which indicates at which phrase begins, provided that phrase is 
a subphrase of string. If not, 0 is returned to indicate that the phrase was not found. A phrase differs 
from a substring in one significant way; a phrase is a set of words, separated by any number of 
blanks.

For instance, "is  a" is a subphrase of  "This is a phrase". Notice the different amount of 
whitespace between "is" and "a".

If start is specified it sets the word in string at which the search starts. The default for start is 1. See
3.1.6 for characters that delimit a word.

WORDPOS('or not','to be or not to be') '3'

WORDPOS('not to','to be or not to be') '4'

WORDPOS('to be','to be or not to be') '1'

WORDPOS('to be','to be or not to be',3) '6'

WORDS(string) - (ANSI)
Returns the number of blank delimited words in the string. See 3.1.6 for characters that delimit a 
word.

WORDS('To be or not to be') '6'

WORDS('Hello world') '2'

WORDS('') '0'
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WRITECH(file, string) - (AREXX)
Writes the string argument to the given logical file. The returned value is the actual number of 
characters written.  

WRITECH('outfile','Testing') '7'

WRITELN(file, string) - (AREXX)
Writes the string argument to the given logical file with a "newline" appended. The returned value is
the actual number of characters written, including the“newline” character(s). 

WRITELN('outfile','Testing') '8' /* Unix */

WRITELN('outfile','Testing') '9' /* DOS */

XRANGE([start] [,end]) - (ANSI)
Returns a string that consists of all the characters from start through end, inclusive. The default 
value for character start is '00'x, while the default value for character end is 'ff'x.  Without 
any parameters, the whole character set in "alphabetic" order is returned. Note that the actual 
representation of the output from XRANGE() depends on the character set used by your computer.

If the value of start is larger than the value of end, the output will wrap around from 'ff'x to 
'00'x. If start or end is not a string containing exactly one character, an error is reported.
XRANGE('A','J') 'ABCDEFGHIJ'

XRANGE('FC'x) 'FCFDFEFF'x

XRANGE(,'05'x) '000102030405'x

XRANGE('FD'x,'04'x) 'FDFEFF0001020304'x

X2B(hexstring) - (ANSI)
Translate hexstring to a binary string. Each hexadecimal digits in hexstring will be translated to four
binary digits in the result. There will be no blanks in the result.

X2B('') ''

X2B('466f6f 426172') '0100011001101111011011110100001001100001
01110010'

X2B('46  6f  6f') '010001100110111101101111'

X2C(hexstring) - (ANSI)
Returns the (packed) string representation of hexstring.  The hexstring will be converted bytewise, 
and blanks may optionally be inserted into the hexstring between pairs or hexadecimal digits, to 
divide the number into groups and improve readability. All groups must have an even number of 
hexadecimal digits, except the first group. If the first group has an odd number of hexadecimal 
digits, it is padded with an extra leading zero before conversion.

X2C('') ''

X2C('466f6f 426172') 'FooBar' /* on ASCII machines */

X2C('46  6f  6f') 'Foo' /* on ASCII machines */
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X2D(hexstring [,length]) - (ANSI)
Returns a whole number that is the decimal representation of hexstring. If length is specified, then 
hexstring is interpreted as a two's complement hexadecimal number consisting of the number 
rightmost hexadecimal numerals in hexstring. If hexstring is shorter than number, it is padded to the
left with <NUL> characters (that is: '00'x).

If length is not specified, hexstring will always be interpreted as an unsigned number. Else, it is 
interpreted as an signed number, and the leftmost bit in hexstring decides the sign.

If it is not possible to express the final result as a whole number under the current settings of 
NUMERIC DIGITS, and STRICT_ANSI option is in effect, error 40.35 is reported.  The number 
to be returned will not be stored in the internal representation of the built-in library, so size 
restrictions on whole numbers that generally applies for built-in functions, do not apply in this case.

X2D('03 24') '792'

X2D('0310') '784'

X2D('ffff') '65535'

X2D('ffff',5) '65535'

X2D('ffff',4) '-1'

X2D('ff80',3) '-128'

X2D('12345',3) '837'
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 3.3 Implementation specific documentation for Regina

 3.3.1 Deviations from the Standard

 For those built-in functions where the last parameter can be omitted, Regina allows the last 
comma to be specified, even when the last parameter itself has been omitted.

 The error messages are slightly redefined in two ways. Firstly, some of the have a slightly more 
definite text, and secondly, some new error messages have been defined.

 The environments available are described in chapter [not yet written].

 Parameter calling

 Stream I/O

 Conditions

 National character sets

 Blanks

 Stacks have the following extra functionality: DROPBUF(), DESBUF() and MAKEBUF() and 
BUFTYPE().

 Random()

 Sourceline

 Time

 Character sets

 3.3.2 Interpreter Internal Debugging Functions

ALLOCATED([option])
Returns the amount of dynamic storage allocated, measured in bytes.  This is the memory allocated 
by the malloc() call, and does not concern stack space or static variables.

As parameter it may take an option, which is one of the single characters:

[A]
It will return a string that is the number of bytes of dynamic memory currently allocated by 
the interpreter.

[C]
Returns a number that is the number of bytes of dynamic memory that is currently in use 
(i.e. not leaked).

[L]
Returns the number of bytes of dynamic memory that is supposed to have been leaked.
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[S]
This is the default value if you do not specify an option. Returns a string that is nicely 
formatted and contains all the other three options, with labels. The format of this string is:

 "Memory: Allocated=XXX, Current=YYY, Leaked=ZZZ".

This function will only be available if the interpreter was compiled with the TRACEMEM 
preprocessor macro defined.

DUMPTREE()
Prints out the internal parse tree for the Rexx program currently being executed. This output is not 
very interesting unless you have good knowledge of the interpreter's internal structures.

DUMPVARS()
This routine dumps a list of all the variables currently defined.  It also gives a lot of information 
which is rather uninteresting for most users.

LISTLEAKED()
List out all memory that has leaked from the interpreter. As a return value, the total memory that has
been listed is returned. There are several option to this function:

[N]
Do not list anything, just calculate the memory.

[A]
List all memory allocations currently in use, not only that which has been marked as leaked.

[L]
Only list the memory that has been marked as leaked. This is the default option.

TRACEBACK()
Prints out a traceback. This is the same routine which is called when the interpreter encounters an 
error. Nice for debugging, but not really useful for any other purposes.
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 3.3.3 Rexx VMS Interface Functions

F$CVSI

F$CVTIME

F$CVUI

F$DIRECTORY

F$ELEMENT

F$EXTRACT

F$FAO

F$FILE_ATTRIBUTES

F$GETDVI

F$GETJPI

F$GETQUI

F$GETSYI

F$IDENTIFIER

F$INTEGER

F$LENGTH

F$LOCATE

F$LOGICAL

F$MESSAGE

F$MODE

F$PARSE

F$PID

F$PRIVILEGE

F$PROCESS

F$SEARCH
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F$SETPRV

F$STRING

F$TIME

F$TRNLNM

F$TYPE

F$USER
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 3.4 RexxUtil for Regina
Regina 3.5 and above provides Patrick McPhee's Regutil external function package as part of the 
Regina distribution. The documentation for Regutil is supplied in a separate document.
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 4 Conditions

In this chapter, the Rexx concept of "conditions" is described.  Conditions allow the programmer to
handle abnormal control flow, and enable him to assign special pieces of Rexx code to be executed
in case of certain incidences.

 In the first section the concept of conditions is explained.

 Then, there is a description of how a standard condition in Rexx would work, if it existed.

 In the third section, all the existing conditions in Rexx are presented, and the differences 
compared to the standard condition described in the previous section are listed.

 The fourth sections contains a collections of random notes on the conditions in Rexx.

 The last section describes differences, extensions and peculiarities in Regina on the of subject 
conditions, and the lists specific behavior.

 4.1 What are Conditions
In this section, the concept of "conditions" are explained: What they are, how they work, and what 
they mean in programming.

 4.1.1 What Do We Need Conditions for?

 4.1.2 Terminology

First, let's look at the terminology used in this chapter. If you don't get a thorough understanding of 
these terms, you will probably not understand much of what is said in the rest of this chapter.

[Incident:]
A situation, external or internal to the interpreter, which it is required to respond to in certain
pre-defined manners. The interpreter recognizes incidents of several different types. The 
incident will often have a character of "suddenness", and will also be independent of the 
normal control flow.

[Event:]
Data Structure describing one incident, used as a descriptor to the incident itself.

[Condition:]
Names the Rexx concept that is equivalent to the incident.

[Raise a Condition:]
The action of transforming the information about an incident into an event. This is done 
after the interpreter senses the condition.  Also includes deciding whether to ignore or 
produce an event.

[Handle a Condition:]
The act of executing some pre-defined actions as a response to the event generated when a 
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condition was raised.
[(Condition) Trap:]

Data Structure containing information about how to handle a condition.
[(Trap) State:]

Part of the condition trap.
[(Condition) Handler:]

Part of the condition trap, which points to a piece of Rexx code which is to be used to 
handle the condition.

[(Trap) Method:]
Part of the condition trap, which defined how the condition handler is to be invoked to 
handle the condition.

[Trigger a Trap:]
The action of invoking a condition handler by the method specified by the trap method, in 
order to handle a condition.

[Trap a Condition:]
Short of trigger a trap for a particular condition.

[Current Trapped Condition:]
The condition currently being handled. This is the same as the most recent trapped condition
on this or higher procedure level.

[(Pending) Event Queue:]
Data Structure storing zero or more events in a specific order.  There are only one event 
queue. The event queue contains events of all condition types, which have been raised, but 
not yet handled.

[Default-Action:]
The pre-defined default way of handling a condition, taken if the trap state for the condition 
raised is OFF.

[Delay-Action:]
The pre-defined default action taken when a condition is raised, and the trap state is DELAY.

 4.2 The Mythical Standard Condition
Rexx Language Level 4.00 has six different conditions, and Rexx Language Level 5.00 has seven. 
However, each of these is a special case of a mythical, non-existing, standard condition. In order to 
better understand the real conditions, we start by explaining how a standard condition work.

In the examples below, we will call our non-existing standard condition MYTH. Note that these 
examples will not be executable on any Rexx implementation.

 4.2.1 Information Regarding Conditions (data structures)

There are mainly five conceptual data structures involved in conditions.

[Event queue.]
There is one interpreter-wide queue of pending conditions. Raising a condition is identical to
adding information about the condition to this queue (FIFO).  The order of the queue is the 
same order in which the conditions are to be handled.

Every entry in the queue of pending conditions contains some information about the event: 
the line number of the Rexx script when the condition was raised, a descriptive text and the 
condition type.
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[Default-Action.]
To each, there exists information about the default-action to take if this condition is raised 
but the trap is in state OFF.  This is called the "default-action". The standard default-action 
is to ignore the condition, while some conditions may abort the execution.

[Delay-Action.]
Each condition will also have delay-action, which tells what to do if the condition is raised 
when condition trap is in state DELAY. The standard delay-action is to queue the condition 
in the queue of pending conditions, while some conditions may ignore it.

[Condition traps.]
For each condition there is a trap which contains three pieces of status information: the state;
the handler; and the method. The state can be ON, OFF or DELAY.

The handler names the Rexx label in the start of the Rexx code to handle the event. The 
method can be either SIGNAL or CALL, and denotes the method in which the condition is to
be handled. If the state is OFF, then neither handler nor method is defined.

[Current Trapped Condition.]
This is the most recently handled condition, and is set whenever a trap is triggered. It 
contains information about method, which condition, and a context-dependent description. 
In fact, the information in the current trapped condition is the same information that was 
originally put into the pending event queue.

Note that the event queue is a data structure connected to the interpreter itself. You operate on the 
same event queue, independent of subroutines, even external ones. On the other hand, the condition 
traps and the current trapped condition are data structures connected to each single routine. When a 
new routine is called, it will get its own condition traps and a current trapped condition. For internal
routines, the initial values will be the same values as those of the caller. For external routines, the 
values are the defaults.

The initial value for the event queue is to be empty.  The default-action and the delay-action are 
static information, and will always retain their values during execution. The initial values for the 
condition traps are that they are all in state OFF. The initial value for the current trapped condition 
is that all information is set to the nullstring to signalize that no condition is currently being trapped.

 4.2.2 How to Set up a Condition Trap

How do you set the information in a condition trap? You do it with a SIGNAL or CALL clause, with
the ON or OFF subkeyword. Remember that a condition trap contain three pieces of information? 
Here are the rules for how to set them:

 To set the trap method, use either SIGNAL or CALL as keyword.

 To set state to ON or OFF, use the appropriate subkeyword in the clause. Note that there is no 
clause or function in Rexx, capable of setting the state of a trap to DELAY.

 To set the condition handler, append the term "NAME handler" to the command. Note that 
this term is only legal if you are setting the state to ON; you can not specify a handler when 
setting the state to OFF.

The trap is said to be "enabled" when the state is either ON or DELAY, and "disabled" when the state
is OFF.  Note that neither the event queue, nor the current trapped condition can be set explicitly by 
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Rexx clauses.  They can only be set as a result of incidents, when raising and trapping conditions.

It sounds very theoretical, doesn't it?  Look at the following examples, which sets the trap MYTH:

/* 1 */ SIGNAL ON MYTH NAME TRAP_IT
/* 2 */ SIGNAL OFF MYTH
/* 3 */ CALL ON MYTH NAME MYTH_TRAP
/* 4 */ CALL ON MYTH
/* 5 */ CALL OFF MYTH

Line 1 sets state to ON, method to SIGNAL and handler to TRAP_IT. Line 2 sets state to OFF, 
handler and method becomes undefined. Line 3 sets state to ON, method to CALL, and handler to 
MYTH_TRAP. Line 4 sets state to ON, method to CALL and handler to MYTH (the default). Line 5 
sets state to OFF, handler and method become undefined.

Why should method and handler become undefined when the trap in state OFF? For two reasons: 
firstly, these values are not used when the trap is in state OFF; and secondly, when you set the trap 
to state ON, they are redefined. So it really does not matter what they are in state OFF.

What happens to this information when you call a subroutine? All information about traps are 
inherited by the subroutine, provided that it is an internal routine. External routines do not inherit 
any information about traps, but use the default values. Note that the inheritance is done by 
copying, so any changes done in the subroutine (internal or external), will only have effect until the 
routine returns.

 4.2.3 How to Raise a Condition

How do you raise a condition? Well, there are really no explicit way in Rexx to do that. The 
conditions are raised when an incident occurs.  What sort of situations that is, depends on the 
context. There are in general three types of incidents, classified by the origin of the event:

 Internal origin. The incident is only dependent on the behaviour of the Rexx script. The 
SYNTAX condition is of this type.

 External origin. The Rexx script and the interpreter has really no control over when this 
incident. It happens completely independent of the control of the Rexx script or interpreter.  The
HALT condition is of this type.

 Mixed origin. The incident is of external origin, but the situation that created the incident, was 
an action by the Rexx script or the interpreter. The ERROR condition is of this type: the incident
is a command returning error, but it can only occur when the interpreter is executing commands.

For conditions trapped by method CALL, standard Rexx requires an implementation to at least 
check for incidents and raise condition at clause boundaries. (But it is allowed to do so elsewhere 
too; although the actual triggering must only be performed at clause boundaries.)  Consequently, 
you must be prepared that in some implementations, conditions trappable by method CALL might 
only be raised (and the trap triggered) at clause boundaries, even if they are currently trapped by 
method SIGNAL.

The seven standard conditions will be raised as result of various situations, read the section 
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describing each one of them for more information.

+--------+     +----------+       /-----\       +--------+
|Incident|     |Condition |      / Trap  \ Off  |Default |
| occurs | ->  |is raised | ->   \ State / -->  | action |
+--------+     +----------+       \-----/       +--------+
                                    /             |
                                  /On             |Delay
                                 /                |
                                /                 v
                     +--------+/          /---------\       
+------+
                     | Queue  |    Yes   /DelayAction\  No  |
Ignore|
                     |an event|    <--   \is queue?  /  --> | 
event|
                     +--------+           \---------/       
+------+
                        |
                        v
                   /-------\
                  /Method is\
                  \ CALL?   /
                   \-------/ \
                  /           \
                 /No        Yes\
                /               \                        /--------
-\
               /                 \                      /         
\
       +-----------+         +-----------+              \ Decision
/
       | Set state |         | Set state 
|               \---------/
       |    OFF    |         |   DELAY   |
       +-----------+         +-----------+              
+-----------+
       | Trigger   |         |           |              |         
|
       |     trap  |         |   Return  |              |  Action 
|
       +-----------+         +-----------+              
+-----------+

The triggering of a condition

When an incident occurs and the condition is raised, the interpreter will check the state of the 
condition trap for that particular condition at the current procedure level.

 If the trap state is OFF, the default-action of the condition is taken immediately. The "standard" 
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default-action is to ignore the condition.

 If the trap state is DELAY, the action will depend on the delay-action of that condition. The 
standard delay-action is to ignore, then nothing further is done. If the delay-action is to queue, 
the interpreter continues as if the state was ON.

 If the state of the trap is ON, an event is generated which describes the incident, and it is queued 
in the pending event queue. The further action will depend on the method of trapping.

 If the method is CALL, the state of the trap will be set to DELAY. Then the normal execution is 
resumed.  The idea is that the interpreter will check the event queue later (at a clause boundary),
and trigger the appropriate trap, if it finds any events in the event queue.

 Else, if method of trapping is SIGNAL, then the action taken is this: First set the trap to state 
OFF, then terminate clause the interpreter was executing at this procedure level. Then it 
explicitly trigger the condition trap.

This process has be shown in the figure above. It shows how an incident makes the interpreter raise 
a condition, and that the state of the condition trap determines what to do next. The possible 
outcomes of this process are: to take the default-action; to ignore if delay-action is not to queue; to 
just queue and the continue execution; or to queue and trigger the trap.

 4.2.4 How to Trigger a Condition Trap

What are the situations where a condition trap might be triggered?  It depends on the method 
currently set in the condition trap.

If the method is SIGNAL, then the interpreter will explicitly trigger the relevant trap when it has 
raised the condition after having sensed the incident. Note that only the particular trap in question 
will be triggered in this case; other traps will not be triggered, even if the pending event queue is 
non-empty.

In addition, the interpreter will at each clause boundary check for any pending events in the event 
queue. If the queue is non-empty, the interpreter will not immediately execute the next normal 
statement, but it will handle the condition(s) first. This procedure is repeated until there are no more
events queued. Only then will the interpreter advance to execute the next normal statement.

Note that the Rexx standard does not require the pending events to be handled in any particular 
order, although the model shown in this documentation it will be in the order in which the 
conditions were raised.  Consequently, if one clause generates several events that raise conditions 
before or at the next clause boundary, and these conditions are trapped by method CALL. Then, the 
order on which the various traps are triggered is implementations-dependent.  But the order in 
which the different instances of the same condition is handled, is the same as the order of the 
condition indicator queue.

 4.2.5 Trapping by Method SIGNAL
Assume that a condition is being trapped by method SIGNAL, that the state is ON and the handler is
MYTH_TRAP. The following Rexx clause will setup the trap correctly:
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SIGNAL ON MYTH NAME MYTH_TRAP

Now, suppose the MYTH incident occurs. The interpreter will sense it, queue an event, set the trap 
state to OFF and then explicitly trigger the trap, since the method is SIGNAL. What happens when 
the trap is triggered?

 It collects the first event from the queue of pending events. The information is removed from the
queue.

 The current trapped condition is set to the information removed from the pending event queue.

 Then, the interpreter simulates a SIGNAL clause to the label named by trap handler of the trap 
for the condition in question.

 As all SIGNAL clauses, this will have the side-effects of setting the SIGL special variable, and 
terminating all active loops at the current procedure level.

That's it for method SIGNAL. If you want to continue trapping condition MYTH, you have to 
execute a new SIGNAL ON MYTH clause to set the state of the trap to ON. But no matter how 
quick you reset the trap, you will always have a short period where it is in state OFF. This means 
that you can not in general use the method SIGNAL if you really want to be sure that you don't 
loose any MYTH events, unless you have some control over when MYTH condition may arise.

Also note that since the statement being executed is terminated; all active loops on the current 
procedure level are terminated; and the only indication where the error occurred is the line number 
(the line may contain several clauses), then it is in general impossible to pick up the normal 
execution after a condition trapped by SIGNAL.  Therefore, this method is best suited for a 
"graceful death" type of traps. If the trap is triggered, you want to terminate what you were doing, 
and pick up the execution at an earlier stage, e.g. the previous procedure level.

 4.2.6 Trapping by Method CALL
Assume that the condition MYTH is being trapped by method CALL, that the state is ON and the 
handler is MYTH_HANDLER.

The following Rexx clause will setup the trap correctly:

CALL ON MYTH NAME MYTH_HANDLER

Now, suppose that the MYTH incident occurs. When the interpreter senses that, it will raise the 
MYTH condition. Since the trap state is ON and the trap method is CALL, it will create an event and 
queue it in the pending event queue and set the trap state to DELAY. Then it continues the normal 
execution. The trap is not triggered before the interpreter encounters the next clause boundary. What
happens then?

 At the every clause boundaries, the interpreter check for any pending events in the event queue. 
If one is found, it is handled.  This action is done repeatedly, until the event queue is empty.

 It will simulate a normal function call to the label named by the trap handler. As with any CALL 
clause, this will set the special variable SIGL to the line of from which the call was made. This 
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is done prior to the call. Note that this is the current line at the time when the condition was 
raised, not when it was triggered.  All other actions normally performed when calling a 
subroutine are done.  Note that the arguments to the subroutine are set to empty.

 However, just before execution of the routine starts, it will remove the first event in the pending 
event queue, the information is instead put into the current trapped condition. Note that the 
current trapped condition is information that is saved across subroutine calls. It is set after the 
condition handler is called, and will be local to the condition handler (and functions called by 
the condition handler). To the "caller" (i.e. the procedure level active when the trap was 
triggered), it will seem as if the current trapped condition was never changed.

 Then the condition handler finishes execution, and returns by executing the RETURN clause. 
Any expression given as argument to RETURN will be ignored, i.e. the special variable RESULT
will not be set upon return from a condition handler.

 At the return from the condition handler, the current trapped condition and the setup of all traps 
are restored, as with a normal return from subroutine.  As a special case, the state of the trap just
triggered, will not be put back into DELAY state, but is set to state ON.

 Afterward (and before the next normal clause), the interpreter will again check for more events 
in the event queue, and it will not continue on the Rexx script before the queue is empty.

During the triggering of a trap by method CALL at a clause boundary, the state of the trap is not 
normally changed, it will continue to be DELAY, as was set when the condition was raised.  It will 
continue to be in state DELAY until return from the condition handler, at which the state of the trap 
in the caller will be changed to ON. If, during the execution of the condition trap, the state of the 
condition being trapped is set, that change will only last until the return from the condition handler.

Since new conditions are generally delayed when an condition handler is executing, new conditions 
are queued up for execution. If the trap state is changed to ON, the pending event queue will be 
processed as named at the next clause boundary. If the state is changed to OFF, the default action of 
the conditions will be taken at the next clause boundary.

 4.2.7 The Current Trapped Condition

The interpreter maintains a data structure called the current trapped condition. It contains 
information relating the most recent condition trapped on this or higher procedure level. The current
trapped condition is normally inherited by subroutines and functions, and restored after return from 
these.

 When trapped by method SIGNAL the current trapped condition of the current procedure level 
is set to information describing the condition trapped.

 When trapped by method CALL, the current trapped condition at the procedure level which the 
trap occurred at, is not changed.  Instead, the current trapped condition in the condition handler 
is set to information describing the condition.

The information stored in the current trapped condition can be retrieved by the built-in function 
CONDITION(). The syntax format of this function is:
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CONDITION(option)

where option is an option string of which only the first character matters.  The valid options are: 
Condition name, Description, Instruction and State. These will return: the name of
the current trapped condition; the descriptive text; the method; and the current state of the condition,
respectively. The default option is Instruction. See the documentation on the built-in functions.
See also the description of each condition below.

Note that the State option do not return the state at the time when the condition was raised or the 
trap was triggered. It returns the current state of the trap, and may change during execution.  The 
other information in the current trapped condition may only change when a new condition is 
trapped at return from subroutines.

 4.3 The Real Conditions
We have now described how the standard condition and condition trap works in Rexx. Let's look at 
the seven conditions defined which do exist.  Note that none of these behaves exactly as the 
standard condition.

 4.3.1 The SYNTAX condition
The SYNTAX condition is of internal origin, and is raised when any syntax or runtime error is 
discovered by the Rexx interpreter.  It might be any of the situations that would normally lead to 
the abortion of the program and the report of a Rexx error message, except error message number 4
(Program interrupted), which is handled by the HALT condition.

There are several differences between this condition and the standard condition:

 It is not possible to trap this condition with the method CALL, only method SIGNAL. The 
reason for this is partly that method CALL tries to continue execution until next boundary before
triggering the trap. That might not be possible with syntax or runtime errors.

 When this condition is trapped, the special variable RC is set to the Rexx error number of the 
syntax or runtime error that caused the condition. This is done just before the setting of the 
special variable SIGL.

 The default action of this condition if the trap state is OFF, is to abort the program with a 
traceback and error message.

 There is not delay-action for condition SYNTAX, since it can not be trapped by method CALL, 
and consequently never can get into state DELAY.

The descriptive text returned by CONDITION() when called with the Description option for 
condition SYNTAX, is implementation dependent, and may also be a nullstring. Consult the 
implementation-specific documentation for more information.

 4.3.2 The HALT condition
The HALT condition of external origin, which is raised as a result of an action from the user, 
normally a combination of keys which tries to abort the program. Which combination of keys will 
vary between operating systems. Some systems might also simulate this event by other means than 
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key combinations. In general ^C and ^-Break key combinations will generate this condition.

The differences between HALT and the standard condition are:

 The default-action for the HALT condition is to abort execution, as though a Rexx runtime error
number 4 (Program interrupted) had been reported. But note that SYNTAX will never be raised 
if HALT is not trapped.

 The delay-action of this condition is to ignore, not queue.

The standard allows the interpreter to limit the search for situations that would set the HALT 
condition, to clause boundaries. As a result, the response time from pressing the key combination to 
actually raising the condition or triggering the trap may vary, even if HALT is trapped by method 
SIGNAL. If a clause for some reason has blocked execution, and never finish, you may not be able 
to break the program.

The descriptive text returned by CONDITION() when called with the Description option for 
condition HALT, is implementation dependent, and may also be a nullstring. In general, it will 
describe the way in which the interpreter was attempted halted, in particular if there are more than 
one way to do raise a HALT condition. Consult the implementation documentation for more 
information.

 4.3.3 The ERROR condition
The ERROR is a condition of mixed origin, it is raised when a command returns a return value 
which indicates error during execution.  Often, commands return a numeric value, and a particular 
value is considered to mean success. Then, other values might raise the ERROR condition.

Differences between ERROR and the standard condition:

 The delay action of ERROR is to ignore, not to queue.

 The special variable RC is always set before this condition is raised. So even if it is trapped by 
method SIGNAL, you can rely on RC to be set to the return value of the command.

Unfortunately, there is no universal standard on return values. As stated, they are often numeric, but 
some operating system use non-numeric return values. For those which do use numeric values, there
are no standard telling which values and ranges are considered errors and which are considered 
success. In fact, the interpretation of the value might differ between commands within the same 
operating system.

Therefore, it is up to the Rexx implementation to define which values and ranges that are 
considered errors. You must expect that this information can differ between implementations as well
as between different environments within one implementation.

The descriptive text returned by CONDITION() when called with the Description option for 
condition ERROR, is the command which caused the error. Note that this is the command as the 
environment saw it, not as it was entered in the Rexx script source code.
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 4.3.4 The FAILURE condition
The FAILURE is a condition of mixed origin, it is raised when a command returns a return value 
which indicates failure during execution, abnormal termination, or when it was impossible to 
execute a command.  It is a subset of the ERROR condition, and if it is in state OFF, then the ERROR
condition will be raised instead. But note that an implementation is free to consider all return codes 
from commands as ERRORs, and none as FAILURES. In that case, the only situation where a 
FAILURE would occur, is when it is impossible to execute a command.

Differences between FAILURE and the standard condition:

 The delay action of FAILURE is to ignore, not to queue.

 The special variable RC is always set before this condition is raised. So even if it is trapped by 
method SIGNAL, you can rely on RC to be set to the return value of the command, or the return 
code that signalize that the command was impossible to execute.

As for ERROR, there is no standard the defines which return values are failures and which are 
errors. Consult the system and implementation independent documentation for more information.

The descriptive text returned by CONDITION() when called with the Description option for 
condition FAILURE, is the command which caused the error. Note that this is the command as the 
environment saw it, not as it was entered in the Rexx script source code.

 4.3.5 The NOVALUE condition
The NOVALUE condition is of internal origin. It is raised in some circumstances if the value of an 
unset symbol (which is not a constant symbol) is requested. Normally, this would return the default 
value of the symbol. It is considered bad programming practice not to initialize variables, and 
setting the NOVALUE condition is one method of finding the parts of your program that uses this 
programming practice.

Note however, there are only three instances where this condition may be raised: that is when the 
value of an unset (non-constant) symbol is used requested: in an expression; after the VAR 
subkeyword in a PARSE clause; and as an indirect reference in either a template, a DROP or a 
PROCEDURE clause. In particular, this condition is not raised if the VALUE() or SYMBOL() built-
in functions refer to an unset symbol.

Differences between NOVALUE and the standard condition are:

 It may only be trapped by method SIGNAL, never method CALL. This requirement might seem 
somewhat strange, but the idea is that since an implementation is only forced to check for 
conditions trapped by method CALL at clause boundaries, incidences that may occur at any 
point within clauses (like NOVALUE) can only be trapped by method SIGNAL. (However, 
condition NOTREADY can occur within a clause, and may be trapped by method CALL so this 
does not seem to be absolute consistent.)

 There is not delay-action for condition NOVALUE, since it can not be trapped by method CALL, 
and consequently never can get into state DELAY.
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The descriptive text returned by calling CONDITION() with the Description option, is the 
derived (i.e. tail has be substituted if possible) name of the variable that caused the condition to be 
raised.

 4.3.6 The NOTREADY condition
The condition NOTREADY is a condition of mixed origin. It is raised as a result of problems with 
stream I/O. Exactly what causes it, may vary between implementations, but some of the more 
probable causes are: waiting for more I/O on transient streams; access to streams not allowed; I/O 
operation would block if attempted; etc. See the chapter; Stream Input and Output for more 
information.

Differences between NOTREADY and the standard condition are:

 It will be ignored rather than queued if condition trap is in state DELAY.

 This condition differs from the rest in that it can be raised during execution of a clause, but can 
still be trapped by method CALL.

The descriptive text returned by CONDITION() when called with the Description option for 
condition NOTREADY, is the name of the stream which caused the problem. This is probably the 
same string that you used as the first parameter to the functions that operates on stream I/O. For the 
default streams (default input and output stream), the string returned by CONDITION() will be the 
nullstring.

Note that if the NOTREADY trap is in state DELAY, then all I/O for files which has tried to raise 
NOTREADY within the current clause will be simulated as if operation had succeeded.

 4.3.7 The LOSTDIGITS condition
The condition LOSTDIGITS was introduced in Language Level 5.00. It is raised as a result of any 
arithmetic operation which results in the loss of any digits. i.e. If the number of significant digits in 
the result of an arithmetic operation would exceed the currently defined number of digits via 
NUMERIC DIGITS, then the LOSTDIGITS condition is raised.

Differences between LOSTDIGITS and the standard condition are:

 It may only be trapped by method SIGNAL, never method CALL.

 There is not delay-action for condition NOVALUE, since it can not be trapped by method CALL, 
and consequently never can get into state DELAY.

The descriptive text returned by CONDITION() when called with the Description option for 
condition NOTREADY, is the name of the stream which caused the problem. This is probably the 
same string that you used as the first parameter to the functions that operates on stream I/O. For the 
default streams (default input and output stream), the string returned by CONDITION() will be the 
nullstring.
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 4.4 Further Notes on Conditions

 4.4.1 Conditions under Language Level 3.50

The concept of conditions was very much expanded from Rexx language level 3.50 to level 4.00. 
Many of the central features in conditions are new in level 4.00, these include:

 The CALL method is new, previously only the SIGNAL method was available, which made it 
rather difficult to resume execution after a problem. As a part of this, the DELAY state has been 
added too.

 The condition NOTREADY has been added, to allow better control over problems involving 
stream I/O.

 The built-in function CONDITION() has been added, to allow extraction of information about 
the current trapped condition.

 4.4.2 Pitfalls when Using Condition Traps

There are several pitfalls when using conditions:

 Remember that some information are saved across the functions. Both the current trapped 
condition and the settings of the traps.  Consequently, you can not set a trap in a procedure level 
from a lower level. (i.e. calling a subroutine to set a trap is will not work.)

 Remember that SIGL is set when trapped by method CALL.  This means that whenever a 
condition might be trapped by CALL, the SIGL will be set to a new value. Consequently, never 
trust the contents of the SIGL variable for more than one clause at a time. This is very 
frustrating, but at least it will not happen often. When it do happen, though, you will probably 
have a hard time debugging it.

 Also remember that if you use the PROCEDURE clause in a condition handler called by method 
CALL, remember to EXPOSE the special variable SIGL if you want to use it inside the 
condition handler. Else it will be shadowed by the PROCEDURE.

 4.4.3 The Correctness of this Description

In this description of conditions in Rexx, I have gone further in the description of how conditions 
work, their internal data structures, the order in which things are executed etc., than the standard 
does.  I have tried to interpret the set of distinct statements that is the documentation on condition, 
and design a complete and consistent system describing how such conditions work.  I have done 
this to try to clarify an area of Rexx which at first glance is very difficult and sometimes non-
intuitive.

I hope that the liberties I have taken have helped describe conditions in Rexx. I do not feel that the 
adding of details that I have done in any way change how conditions work, but at least I owe the 
reader to list which concepts that are genuine Rexx, and which have been filled in by me to make 
the picture more complete. These are not a part of the standard Rexx.

 Rexx does not have anything called a standard condition. There just "are" a set of conditions 
having different attributes and values. Sometimes there are default values to some of the 
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attributes, but still the are no default condition.

 The terms "event" and "incident" are not used. Instead the term "condition" is somewhat 
overloaded to mean several things, depending on the situation. I have found it advantageous to 
use different terms for each of these concepts.

 Standard Rexx does not have condition queue, although a structure of such a kind is needed to 
handled the queuing of pending conditions when the trap state is DELAY.

 The values default-action and delay-action are really non-existing in the Standard Rexx 
documentation. I made them up to make the system more easy to explain.

 The two-step process of first raising the flag, and then (possibly at a later stage) triggering the 
trap, is not really a Rexx concept. Originally, Rexx seems to allow implementations to select 
certain places of the interpreter where events are sought for. All standard conditions that can be 
called by method CALL, can be implemented by checking only at clause boundaries.

 Consequently, a Rexx implementation can choose to trigger the trap immediately after a 
condition are raised (since conditions are only raised immediately before the trap would trigger 
anyway). This is also the common way used in language level 3.50, when only method SIGNAL
was implemented.

 Unfortunately, the introduction of the state DELAY forces the interpreter to keep a queue of 
pending conditions, so there is nothing to gain on insisting that raising should happen 
immediately before triggering. And the picture is even more muddied when the NOTREADY 
condition is introduced. Since it explicitly allows raising of condition to be done during the 
clause, even though the triggering of the trap must happen (if method is CALL) at the end of the 
clause.

I really hope that these changes has made the concept of conditions easier to understand, not harder.
Please feel free to flame me for any of these which you don't think is representative for Rexx.

 4.5 Conditions in Regina
Here comes documentation that are specific for the Regina implementation of Rexx.

 4.5.1 How to Raise the HALT condition
The implementation connect the HALT condition to an external event, which might be the pressing 
of certain key combination. The common conventions of the operating system will dictate what that 
combination of keystrokes is.

Below is a list, which describes how to invoke an event that will raise the HALT condition under 
various the operating systems which Regina runs under.

 Under various variants of the Unix operating system, the HALT event it connected to the signal 
"interrupt" (SIGINT). Often this signal is bound to special keystrokes.  Depending on your 
version of Unix, this might be <ctrl>-<c> (mostly BSD-variants) or the <del> key (mostly 
System V).  It is also possible to send this signal from the command line, in general using the 
program kill(1); or from program, in general using the call signal(3).  Refer to your 
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Unix documentation for more information.

 Under VAX/VMS, the key sequence <ctrl>-<c> is used to raise the HALT condition in the 
interpreter.

 4.6 Possible Future extensions
 Here is a list of possible future extensions to Rexx which has not been implemented into 

Regina. Some of these exist in other implementations of Rexx, and some of them are just 
suggestions or ideas thrown around by various people.

 Another extension could have been included, but have been left out so far. It is the delay-action, 
which in standard Rexx can be either to ignore or to queue. There is at least one other action 
that make sense: to replace. That is, when a trap is in state DELAY, and a new condition has 
been raised, the pending queue is emptied, before the new condition is queued. That way, the 
new condition will effectively replace any conditions already in the queue.

 If there are several new conditions raised while the condition handler is executing (and the trap 
state is DELAY), only the very last of them is remembered.

 It should be possible to set the state for a trap to DELAY, so that any new instances of the 
condition is handles by the delay-action. As a special case, the SYNTAX condition trap might 
not be set in state DELAY
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 5 Stream Input and Output
And the streams thereof shall be turned into pitch

Isaiah 33:21

For every one that asketh receivedth;
and he that seeketh findth;
and to him that knocketh it shall be opened.

Matthew 7:8

This chapter treats the topic of input from and output to streams using the built-in functions. An 
overview of the other parts of the input/output (I/O) system is also given but not discussed in detail. 
At the end of the chapter there are sections containing implementation-specific information for this 
topic.

 5.1 Background and Historical Remarks
Stream I/O is a problem area for languages like Rexx. They try to maintain compatibility for all 
platforms (i.e. to be non-system-specific), but the basic I/O capabilities differ between systems, so 
the simplest way to achieve compatibility is to include only a minimal, common subset of the 
functionality of all platforms.  With respect to the functionality of the interface to their surrounding 
environment, non-system-specific script languages like Rexx are inherently inferior to system 
specific script languages which are hardwired to particular operating systems and can benefit from 
all their features.

Although Rexx formally has its own I/O constructs, it is common for some platforms that most or 
all of the I/O is performed as operating system commands rather than in Rexx. This is how it was 
originally done under VM/CMS, which was one of the earliest implementations and which did not 
support Rexx's I/O constructs. There, the EXECIO program and the stack (among other methods) 
are used to transfer data to and from a Rexx program.

Later, the built-in functions for stream I/O gained territory, but lots of implementations still rely on 
special purpose programs for doing I/O. The general recommendation to Rexx programmers is to 
use the built-in functions instead of special purpose programs whenever possible; that is the only 
way to make compatible programs.

 5.2 Rexx's Notion of a Stream
Rexx regards a stream as a sequence of characters, conceptually equivalent to what a user might 
type at the keyboard. Note that a stream is not generally equivalent to a file.  [MCGH:DICT] 
defines a file as "a collection of related records treated as a unit," while [OX:CDICT] defines it as 
"Information held on backing store [...] in order (a) to enable it to persist beyond the time of 
execution of a single job and/or (b) to overcome space limitations in main memory." A stream is 
defined by [OX:CDICT] as "a flow of data characterized by relative long duration and constant 
rate."
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Thus, a file has a flavor of persistency, while a stream has a flavor of sequence and momentarily. 
For a stream, data read earlier may already have been lost, and the data not yet read may not be 
currently defined; for instance the input typed at a keyboard or the output of a program. Even 
though much of the Rexx literature use these two terms interchangeably (and after all, there is some
overlap), you should bear in mind that there is a difference between them.

In this documentation, the term "file" means "a collection of persistent data on secondary storage, to
which random access and multiple retrieval are allowed." The term "stream" means a sequential 
flow of data from a file or from a sequential device like a terminal, tape, or the output of a program. 
The term stream is also used in its strict Rexx meaning: a handle to/from which a flow of data can 
be written/read.

 5.3 Short Crash-Course
Rexx I/O is very simple, and this short crash course is probably all you need in a first-time reading 
of this chapter. But note that that, we need to jump a bit ahead in this section.

To read a line from a stream, use the LINEIN() built-in function, which returns the data read. To 
write a stream, use the LINEOUT() built-in function, and supply the data to be written as the 
second parameter. For both operations, give the name of the stream as the first parameter. Some 
small examples:

contents = linein( 'myfile.txt' )
call lineout 'yourfile.txt', 'Data to be written'

The first of these reads a line from the stream myfile.txt, while the second writes a line to the 
stream yourfile.txt.  Both these calls operate on lines and they use a system specific end-of-
line marker as a delimiter between lines. The marker is tagged on at the end of any data written out, 
and stripped off any data read.

Opening a stream in Rexx is generally done automatically, so you can generally ignore that in your 
programs.  Another useful method is repositioning to a particular line:

call linein 'myfile.txt', 12, 0
call lineout 'yourfile.txt',, 13

Where the first of these sets the current read position to the start of line 12 of the stream; the second
sets the current write position to the start of line 13. Note that the second parameter is empty, that 
means no data is to be written. Also note that the current read and write positions are two 
independent entities; setting one does not affect the other.

The built-in functions CHARIN() and CHAROUT() are similar to the ones just described, except 
that they are character-oriented, i.e. the end-of-line delimiter is not treated as a special character.

Examples of use are:

say charin( 'myfile.txt', 10 )
call charout 'logfile', 'some data'

Here, the first example reads 10 characters, starting at the current input position, while the second 
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writes the eleven characters of "some data" to the file, without an end-of-file marker afterward.

It is possible to reposition character-wise too, some examples are:

call charin 'myfile',, 8
call charout 'foofile,, 10

These two clauses repositions the current read and write positions of the named files to the 8th and 
10th characters, respectively.

 5.4 Naming Streams
Unlike most programming languages, Rexx does not use file handles; the name of the stream is also
in general the handle (although some implementations add an extra level of indirection). You must 
supply the name to all I/O functions operating on a stream. However, internally, the Rexx 
interpreter is likely to use the native file pointers of the operating system, in order to improve speed.
The name specified can generally be the name of an operating system file, a device name, or a 
special stream name supported by your implementation.

The format of the stream name is very dependent upon your operating system. For portability 
concerns, you should try not to specify it as a literal string in each I/O call, but set a variable to the 
stream name, and use that variable when calling I/O functions. This reduces the number of places 
you need to make changes if you need to port the program to another system.  Unfortunately, this 
approach increases the need for PROCEDURE EXPOSE, since the variable containing the files 
name must be available to all routines using file I/O for that particular file, and all their non-
common ancestors.

Example: Specifying file names

The following code illustrates a portability problem related to the naming of streams. The variable 
filename is set to the name of the stream operated on in the function call.

filename = '/tmp/MyFile.Txt'
say ' first line is' linein( filename )
say 'second line is' linein( filename )
say ' third line is' linein( filename )

Suppose this script, which looks like it is written for Unix, is moved to a VMS machine. Then, the 
stream name might be something like SYS$TEMP:MYFILE.TXT, but you only need to change the
script at one particular point: the assignment to the variable filename; as opposed to three places 
if the stream name is hard-coded in each of the three calls to LINEIN().

If the stream name is omitted from the built-in I/O functions, a default stream is used: input 
functions use the default input stream, while output functions use the default output stream. These 
are implicit references to the default input and output streams, but unfortunately, there is no 
standard way to explicitly refer to these two streams. And consequently, there is no standard way to 
refer to the default input or output stream in the built-in function STREAM().

However, most implementations allow you to access the default streams explicitly through a name, 
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maybe the nullstring or something like stdin and stdout.  However, you must refer to the 
implementation-specific documentation for information about this.

Also note that standard Rexx does not support the concept of a default error stream. On operating 
systems supporting this, it can probably be accessed through a special name; see system-specific 
information. The same applies for other special streams.

Sometimes the term "default input stream" is called "standard input stream," "default input 
devices," "standard input," or just "stdin."

The use of stream names instead of stream descriptors or handles is deeply rooted in the Rexx 
philosophy: Data structures are text strings carrying information, rather than opaque data blocks in 
internal, binary format. This opens for some intriguing possibilities.  Under some operating systems,
a file can be referred to by many names.  For instance, under Unix, a file can be referred to as 
foobar, ./foobar and ././foobar. All which name the same file, although a Rexx 
interpreter may be likely to interpret them as three different streams, because the names themselves 
differ.  On the other hand, nothing prevents an interpreter from discovering that these are names for 
the same stream, and treat them as equivalent (except concerns for processing time). Under Unix, 
the problem is not just confined to the use of ./ in file names, hard-links and soft-links can produce
similar effects, too.

Example: Internal file handles

Suppose you start reading from a stream, which is connected to a file called foo. You read the first 
line of foo, then you issue a command, in order to rename foo to bar.  Then, you try to read the 
next line from foo. The Rexx program for doing this under Unix looks something like:

signal on notready
line1 = linein( 'foo' )
'mv foo bar'
line2 = linein( 'foo' )

Theoretically, the file foo does not exist during the second call, so the second read should raise the 
NOTREADY condition.  However, a Rexx interpreter is likely to have opened the stream already, so 
it is performing the reading on the file descriptor of the open file. It is probably not going to check 
whether the file exists before each I/O operation (that would require a lot of extra checking). Under 
most operating systems, renaming a file will not invalidate existing file descriptors.  Consequently, 
the interpreter is likely to continue to read from the original foo file, even though its has changed.

Example: Unix temporary files

On some systems, you can delete a file, and still read from and write to the stream connected to that 
file. This technique is shown in the following Unix specific code:
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tmpfile = '/tmp/myfile'
call lineout tmpfile, ''
call lineout tmpfile,, 1
'rm' tmpfile
call lineout tmpfile, 'This is the first line'

Under Unix, this technique is often used to create temporary files; you are guaranteed that the file 
will be deleted on closing, no matter how your program terminates. Unix deletes a file whenever 
there are no more references to it. Whether the reference is from the file system or from an open 
descriptor in a user process is irrelevant.  After the rm command, the only reference to the file is 
from the Rexx interpreter. Whenever it terminates, the file is deleted--since there are no more 
references to it.

Example: Files in different directories

Here is yet another example of how using the filename directly in the stream I/O functions may give
strange effects. Suppose you are using a system that has hierarchical directories, and you have a 
function CHDIR() which sets a current directory; then consider the following code:

call chdir '../dir1'
call lineout 'foobar', 'written to foobar while in dir1'
call chdir '../dir2'
call lineout 'foobar', 'written to foobar while in dir2'

Since the file is implicitly opened while you are in the directory dir1, the file foobar refers to a 
file located there.  However, after changing the directory to dir2, it may seem logical that the 
second call to LINEOUT() operates on a file in dir2, but that may not be the case. Considering 
that these clauses may come a great number of lines apart, that Rexx has no standard way of 
closing files, and that Rexx only have one file table (i.e. open files are not local to subroutines); this
may open for a significant astonishment in complex Rexx scripts.

Whether an implementation treats ././foo and ./foo as different streams is system-dependent; 
that applies to the effects of renaming or deleting the file while reading or writing, too. See your 
interpreter's system-specific documentation.

Most of the effects shown in the examples above are due to insufficient isolation between the 
filename of the operating system and the file handle in the Rexx program. Whenever a file can be 
explicitly opened and bound to a file handle, you should do that in order to decrease the possibilities
for strange side effects.

Interpreters that allow this method generally have an OPEN() function that takes the name of the 
files to open as a parameter, and returns a string that uniquely identifies that open file within the 
current context; e.g. an index into a table of open files. Later, this index can be used instead of the 
filename.

Some implementations allow only this indirect naming scheme, while others may allow a mix 
between direct and indirect naming. The latter is likely to create some problems, since some strings 
are likely to be both valid direct and indirect file ids.
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 5.5 Persistent and Transient Streams

Rexx knows two different types of streams: persistent and transient. They differ conceptually in the 
way they can be operated, which is dictated by the way they are stored.  But there is no difference in
the data you can read from or write to them (i.e. both can used for character- or line-wise data), and 
both are read and written using the same functions.

[Persistent streams]
(often referred to just as "files") are conceptually stored on permanent storage in the 
computer (e.g. a disk), as an array of characters. Random access to and repeated retrieval of 
any part of the stream are allowed for persistent streams. Typical example of persistent 
streams are normal operating system files.

[Transient streams]
are typically not available for random access or repeated retrieval, either because it is not 
stored permanently, but read as a sequence of data that is generated on the fly; or because 
they are available from a sequential storage (e.g. magnetic tape) where random access is 
difficult or impossible. Typical examples of transient streams are devices like keyboards, 
printers, communication interfaces, pipelines, etc.

Rexx does not allow any repositioning on transient streams; such operations are not conceptually 
meaningful; a transient stream must be treated sequentially. It is possible to treat a persistent stream 
as a transient stream, but not vice versa. Thus, some implementations may allow you to open a 
persistent stream as transient. This may be useful for files to which you have only append access, 
i.e. writes can only be performed at the end of file. Whether you can open a stream in a particular 
mode, or change the mode of a stream already open depends on your implementation.

Example: Determining stream type

Unfortunately, there is no standard way to determine whether a given file is persistent or transient. 
You may try to reposition for the file, and you can assume that the file is persistent if the 
repositioning succeeded, like in the following code:

streamtype: procedure
signal on notready
call linein arg(1), 1, 0
return 'persistent'          /* unless file is empty */

notready:
return 'transient'

Although the idea in this code is correct, there are unfortunately a few problems. First, the 
NOTREADY condition can be raised by other things than trying to reposition a transient stream; e.g. 
by any repositioning of the current read position in an empty file, if you have write access only, etc. 
Second, your implementation may not have NOTREADY, or it may not use it for this situation.

The best method is to use a STREAM() function, if one is available. Unfortunately, that is not very 
compatible, since no standard stream commands are defined.
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 5.6 Opening a Stream
In most programming languages, opening a file is the process of binding a file (given by a file 
name) to an internal handle. Rexx is a bit special, since conceptually, it does not use stream 
handles, just stream names. Therefore, the stream name is itself also the stream handle, and the 
process of opening streams becomes apparently redundant.  However, note that a number of 
implementations allow explicit opening, and some even require it.

Rexx may open streams "on demand" when they are used for the first time.  However, this behavior
is not defined in TRL, which says the act of opening the stream is not a part of Rexx [TRL2]. This 
might be interpreted as open-on-demand or that some system-specific program must be executed to 
open a stream.

Although an open-on-demand feature is very practical, there are situations where you need to open 
streams in particular modes. Thus, most systems have facilities for explicitly opening a file. Some 
Rexx interpreters may require you to perform some implementation-specific operation before 
accessing streams, but most are likely to just open them the first time they are referred to in an I/O 
operation.

There are two main approaches to explicit opening of streams. The first uses a non-standard built-in 
function normally called OPEN(), which generally takes the name of the file to open as the first 
parameter, and often the mode as the second parameter.  The second approach is similar, but uses 
the standard built-in function STREAM() with a Command option.

Example: Not closing files

Since there are no open or close operation, a Rexx interpreter never knows when to close a stream, 
unless explicitly told so. It can never predict when a particular stream is to be used next, so it has to 
keep the current read and write positions in case the stream is to be used again.  Therefore, you 
should always close the streams when you are finished using them. Failure to do so, will fill the 
interpreter with data about unneeded streams, and more serious, it may fill the file table of your 
process or system. As a rule, any Rexx script that uses more than a couple of streams, should close 
every stream after use, in order to minimize the number of simultaneously open streams. Thus, the 
following code might eventually crash for some Rexx interpreters:

do i=1 to 300
call lineout 'file.'||i, 'this is file number' i

end

A Rexx interpreter might try to defend itself against this sort of open-many-close-none 
programming, using of various programming techniques; this may lead to other strange effects.  
However, the main responsibility for avoiding this is with you, the Rexx script programmer.

Note that if a stream is already open for reading, and you start writing to it, your implementation 
may have to reopen it in order to open for both reading and writing. There are mainly two strategies 
for handling this. Either the old file is closed, and then reopened in the new mode, which may leave 
you with read and write access to another file. Or a new file handle is opened for the new mode, 
which may leave you with read and write access to two different files.
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These are real-world problems which are not treated by the ideal description of TRL. A good 
implementation should detect these situations and raise NOTREADY.

 5.7 Closing a Stream
As already mentioned, Rexx does not have an explicit way of opening a stream. Nor does it have an
explicit way of closing a stream. There is one semi-standard method: If you call LINEOUT(), but 
omit both the data to be written and the new current write position, then the implementation is 
defined to set the current write position to the end-of-file.  Furthermore, it is allowed by TRL to do 
something "magic" in addition. It is not explicitly defined what this magic is, but TRL suggests that 
it may be closing the stream, flushing the stream, or committing changes done previously to the 
stream.

In SAA, the definition is strengthened to state that the "magic" is closing, provided that the 
environment supports that operation.

A similar operating can be performed by calling CHAROUT() with neither data nor a new position. 
However, in this case, both TRL and SAA leave it totally up to the implementation whether or not 
the file is to be closed. One can wonder whether the changes for LINEOUT() in SAA with respect 
to TRL should also have been done to CHAROUT(), but that this was forgotten.

TRL2 does not indicate that LINEIN() or CHARIN() can be used to close a string. Thus, the 
closest one gets to a standard way of closing input files is to call e.g. LINEOUT(); although it is 
conceptually suspect to call an output routine for an input file. The historical reasons for this 
omission are perhaps that flushing output files is vital , while the concept of flushing is irrelevant 
for input files; flushing is an important part of closing a file, and that explains why closing is only 
indicated for output files.

Thus, the statement:

call lineout 'myfile.txt'

might be used to close the stream myfile.txt in some implementations. However, it is not 
guaranteed to close the stream, so you cannot depend on this for scripts of maximum portability, but
it's better than nothing. However, note that if it closes the stream, then also the current read position 
is affected. If it merely flushes the stream, then only the current write position is likely to be 
affected.

 5.8 Character-wise and Line-wise I/O
Basically, the built-in Rexx library offers two strategies of reading and writing streams: line-wise 
and character-wise. When reading line-wise, the underlying storage method of the stream must 
contain information which describes where each line starts and ends.

Some file systems store this information as one or more special characters; while others structure 
the file in a number of records; each containing a single line.  This introduces a slightly subtle point;
even though a stream foo returns the same data when read by LINEIN()on two different 
machines; the data read from foo may differ between the same two machines when the stream is 
read by CHARIN(), and vice versa. This is so because the end-of-line markers can vary between 
the two operating systems.
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Example: Character-wise handling of EOL

Suppose a text file contains the following three lines (ASCII character set is assumed):

first
second
third

and you first read it line-wise and then character-wise. Assume the following program:

file = 'DATAFILE'
foo = ''
do i=1 while chars(file)>0

foo = foo || c2x(charin(file))' '
end
say foo

When the file is read line-wise, the output is identical on all machines, i.e. the three lines shown 
above. However, the character-wise reading will be dependent on your operating system and its file 
system, thus, the output might e.g. be any of:

66 69 72 73 74 73 65 6F 63 6E 64 74 68 69 72 64 66 69 72 73 
74 0A

66 69 72 73 74 0A
73 65 6F 63 6E 64 0A
74 68 69 72 64 0A

66 69 72 73 74 0D 0A
73 65 6F 63 6E 64 0D 0A
74 68 69 72 64 0D 0A

If the machine uses records to store the lines, the first one may be the result; here, only the data in 
the lines of the file is returned.  Note that the boxes in the output are put around the data generated 
by the actual line contents. What is outside the boxes is generated by the end-of-line character 
sequences.

The second output line is typical for Unix machines. They use the newline ASCII character as line 
separator, and that character is read immediately after each line. The last line is typical for MS-
DOS, where the line separator character sequence is a carriage return following by a newline 
(ASCII '0D'x and '0A'x).

For maximum portability, the line-wise built-in functions (LINEIN(), LINEOUT() and 
LINES()) should only be used for line-wise streams. And the character-wise built-in functions 
(CHARIN(), CHAROUT() and CHARS()) should only be used for character-wise data. You should
in general be very careful when mixing character- and line-wise data in a single stream; it does 
work, but may easily lead to portability problems.
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The difference between character- and line-wise streams are roughly equivalent to the difference 
between binary and text streams, but the two concepts are not totally equivalent. In a binary file, the
data read is the actual data stored in the file, while in a text file, the character sequences used for 
denoting end-of-line and end-of-file markers may be translated to actions or other characters during 
reading.

The end-of-file marker may be differently implemented on different systems. On some systems, this
marker is only implicitly present at the end-of-file--which is calculated from the file size (e.g. 
Unix). Other systems may put a character signifying end-of-file at the end (or even in the middle) of
the file (e.g. <Ctrl-Z> for MS-DOS).  These concepts vary between operating systems, interpreters 
should handle each concept according to the customs of the operating system.  Check the 
implementation-specific documentation for further information. In any case, if the interpreter treats 
a particular character as end-of-file, then it only gives special treatment to this character during line-
wise operations. During character-wise operations, no characters have special meanings.

 5.9 Reading and Writing
Four built-in functions provide line- and character-oriented stream reading and writing capabilities: 
CHARIN(), CHAROUT(), LINEIN(), LINEOUT().

[CHARIN()]
is a built-in function that takes up to three parameters, which are all optional: the name of 
the stream to read from, the start point, and the number of characters to read. The stream 
name defaults to the default input stream, the start point defaults to the current read position,
the number of characters to read defaults to one character. Leave out the second parameter in
order to avoid all repositioning. During execution, data is read from the stream specified, 
and returned as the return value.

[LINEIN()]
is a built-in function that takes three parameters too, and they are equivalent to the 
parameters of CHARIN(). However, if the second parameter is specified, it refer to a line 
position, rather than a character position; it refers to the character position of the first 
character of that line.  Further, the third parameter can only be 0 or 1, and refers to the 
number of lines to read; i.e. you cannot read more than one line in each call.  The line read is
returned by the function, or the nullstring if no reading was requested.

[LINEOUT()]
is a built-in function that takes three parameters too, the first is the name of the stream to 
write to, and defaults to the default output stream. The second parameter is the data to be 
written to the file, and if not specified, no writing occurs. The third parameter is a line-
oriented position in the file; if the third parameter is specified, the current position is 
repositioned at before the data (if any) is written. If data is written, an end-of-line character 
sequence is appended to the output stream.

[CHAROUT()]
is a built-in function that is used to write characters to a file.  It is identical to LINEOUT(), 
except that the third parameter refers to a character position, instead of a line position.  The 
second difference is that an end-of-line character sequence is not appended at the end of the 
data written.

Example: Counting lines, words, and characters
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The following Rexx program emulates the core functionality of the wc program under Unix. It 
counts the number of lines, words, and characters in a file given as the first argument.

file = arg(1)
parse value 0 0 0 with lines words chars
do while lines(file)>0

line = linein(file)
lines = lines + 1
words = words + words(line)
chars = chars + length(line)

end
say 'lines='lines 'words='words 'chars='chars

There are some problems. For instance, the end-of-line characters are not counted, and a last 
improperly terminated line is not counted either.
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 5.10 Determining the Current Position
Standard Rexx does not have any seek call that returns the current position in a stream. Instead, it 
provides two calls that returns the amount of data remaining on a stream. These two built-in 
functions are LINES() and CHARS().

 The LINES() built-in function returns the number of complete lines left on the stream given as
its first parameter.  The term "complete lines" does not really matter much, since an 
implementation can assume the end-of-file to implicitly mean an end-of-line.

 The CHARS() built-in function returns the number of character left in the stream given as its 
first parameter.

This is one of the concepts where Rexx I/O does not map very well to C I/O and vice versa. While 
Rexx reports the amount of data from the current read position to the end of stream, C reports the 
amount of data from the start of the file to the current position.  Further, the Rexx method only 
works for input streams, while the C method works for both input and output files. On the other 
hand, C has no basic constructs for counting remaining or reposition at lines of a file.

Example: Retrieving current position

So, how does one find the current position in a file, when only allowed to do normal repositioning? 
The trick is to reposition twice, as shown in the code below.

ftell: procedure
parse arg filename
now = chars(filename)
call charin filename, 0, 1
total = chars(filename)
call charin filename, 0, total-now
return total-now

Unfortunately, there are many potential problems with this code.  First, it only works for input files, 
since there is no equivalent to CHARS() for output files. Second, if the file is empty, none of the 
repositioning work, since it is illegal to reposition at or after end-of-file for input files--and the end-
of-file is the first position of the file. Third, if the current read position of the file is at the end of file
(e.g. all characters have been read) it will not work for similar reasons as for the second case. And 
fourth, it only works for persistent files, since transient files do not allow repositioning.

Example: Improved ftell function

An improved version of the code for the ftell routine (given above), which tries to handle these 
problems is:
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ftell: procedure
parse arg filename
signal on notready name not_persist
now = chars(filename)
signal on notready name is_empty
call charin filename, 0, 1
total = chars()
if now>0 then

call charin filename, 0, total-now+1
else if total>0 then

call charin filename, 1, total
else

nop /* empty file, should have raised NOTREADY */
return total-now+1

not_presist: say filename 'is not persistent'; return 0

is_empty: say filename 'is empty'; return 0

The same method can be used for line-oriented I/O too, in order to return the current line number of 
an input file. However, a potential problem in that case is that the routine leaves the stream 
repositioned at the start of the current line, even if it was initially positioned to the middle of a line. 
In addition, the line-oriented version of this ftell routine may prove to be fairly inefficient, since 
the interpreter may have to scan the whole file twice for end-of-line character sequences.

 5.11 Positioning Within a File
Rexx supports two strategies for reading and writing streams: character-wise, and line-wise, this 
section describes how a program can reposition the current positions for each these strategies. Note 
that positioning is only allowed for persistent streams.

For each open file, there is a current read position or a current write position, depending on whether 
the file is opened for reading or writing. If the file is opened for reading and writing simultaneously,
it has both a current read position and a current write position, and the two are independent and in 
general different. A position within a file is the sequence number of the byte or line that will be read
or written in the next such operation.

Note that Rexx starts numbering at one, not zero. Therefore, the first character and the first line of a
stream are both numbered one.  This differs from several other programming languages, which 
starts numbering at zero.

Just after a stream has been opened, the initial values of the current read position is the first 
character in the stream, while the current write position is the end-of-file, i.e. the position just after 
the last character in the stream. Then, reading will return the first character (or line) in the stream, 
and writing will append a new character (or line) to the stream.

These initial values for the current read and write positions are the default values.  Depending on 
your Rexx implementation, other mechanisms for explicitly opening streams (e.g. through the 
STREAM() built-in function) may be provided, and may set other initial values for these positions. 
See the implementation-specific documentation for further information.
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When setting the current read position, it must be set to the position of an existing character in the 
stream; i.e. a positive value, not greater than the total number of characters in the stream. In 
particular, it is illegal to set the current read position to the position immediately after the last 
character in the stream; although this is legal in many other programming languages and operating 
systems, where it is known as "seeking to the end-of-file".

When setting the current write position, it too must be set to the position of an existing character in 
the stream. In addition, and unlike the current read position, the current write position may also be 
set to the position immediately following the last character in the stream. This is known as 
"positioning at the end-of-file", and it is the initial value for the current write position when a 
stream is opened. Note that you are not allowed to reposition the current write position further out 
beyond the end-of-file--which would create a "hole" in the stream--even though this is allowed in 
many other languages and operating systems.

Depending on your operating system and Rexx interpreter, repositioning to after the end-of-file 
may be allowed as an extension, although it is illegal according to TRL2. You should avoid this 
technique if you wish to write portable programs.

Rexx only keeps one current read position and one current write position for each stream. So both 
line-wise and character-wise reading as well as positioning of the current read position will operate 
on the same current read position, and similarly for the current write position.

When repositioning line-wise, the current write position is set to the first character of the line 
positioned at. However, if positioning character-wise so that the current read position is in the 
middle of a line in the file, a subsequent call to LINEIN() will read from (and including) the 
current position until the next end-of-line marker.  Thus, LINEIN() might under some 
circumstances return only the last part of a line. Similarly, if the current write position has been 
positioned in the middle of an existing line by character-wise positioning, and LINEOUT() is 
called, then the line written out becomes the last part of the line stored in the stream.

Note that if you want to reposition the current write position using a line count, the stream may 
have to be open for read, too. This is because the interpreter may have to read the contents of the 
stream in order to find where the lines start and end. Depending on your operating system, this may 
even apply if you reposition using character count.

Example: Repositioning in empty files

Since the current read position must be at an existing character in the stream, it is impossible to 
reposition in or read from an empty stream. Consider the following code:

filename = '/tmp/testing'
call lineout filename,, 1   /* assuming truncation */
call linein filename, 1, 0

One might believe that this would set the current read and write positions to the start of the stream. 
However, assume that the LINEOUT() call truncates the file, so that it is zero bytes long.  Then, 
the last call can never be legal, since there is no byte in the file at which it is possible to position the
current read position.  Therefore, a NOTREADY condition is probably raised.
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Example: Relative repositioning

It is rather difficult to reposition a current read or write position relative to the current position. The 
only way to do this within the definition of the standard is to keep a counter which tells you the 
current position. That is, if you want to move the current read position five lines backwards, you 
must do it like this:

filename = '/tmp/data'
linenum = 0 ;
say linein(filename,10); linenum = 10
do while random(100)>3

say linein(filename); linenum = linenum+1
end
call linein(filename,linenum-5,0); linenum = linenum-5

Here, the variable linenum is updated for each time the current read position is altered. This may 
not seem to difficult, and it is not in most cases. However, it is nearly impossible to do this in the 
general case, since you must keep an account of both line numbers and character numbers. Setting 
one may invalidate the other: consider the situation where you want to reposition the current read 
position to the 10th character before the 100th line in the stream. Except from mixing line-wise and 
character-wise I/O (which can have strange effects), this is nearly impossible. When repositioning 
character-wise, the line number count is invalidated, and vice versa.

The "only" proper way of handling this is to allow one or more (non-standard) STREAM() built-in 
function operations that returns the current character and line count of the stream in the interpreter.

Example: Destroying linecount

This example shows how overwriting text to the middle of a file can destroy the line count. In the 
following code, we assume that the file foobar exists, and contains ten lines which are "first 
line", second line, etc. up to "tenth line". Then consider the following code:

filename = 'foobar'
say linein(filename, 5)   /* says 'fifth line' */
say linein(filename)      /* says 'sixth line' */
say linein(filename)      /* says 'seventh line' */
call lineout filename, 'This is a very long line', 5
say linein(filename, 5)   /* says 'This is a very long line' 
*/
say linein(filename)      /* says 'venth line' */
say linein(filename)      /* says 'eight line' */

As you can see from the output of this example, the call to LINEOUT() inserts a long line and 
overwrites the fifth and sixth lines completely, and the seventh line partially. Afterward, the sixth 
line is the remaining part of the old seventh line, and the new seventh line is the old eighth line, etc.
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 5.12 Errors: Discovery, Handling, and Recovery
TRL2 contains two important improvements over TRL1 in the area of handling errors in stream I/O:
the NOTREADY condition and the STREAM() built-in function.  The NOTREADY condition is 
raised whenever a stream I/O operation did not succeed. The STREAM() function is used to 
retrieve status information about a particular stream or to execute a particular operation for a 
stream.

You can discover that an error occurred during an I/O operation in one of the following ways: a) it 
may trigger a SYNTAX condition; b) it may trigger a NOTREADY condition; or c) it may just not 
return that data it was supposed to.  There is no clear border between which situations should trigger
SYNTAX and which should trigger NOTREADY. Errors in parameters to the I/O functions, like a 
negative start position, is clearly a SYNTAX condition, while reading off the end-of-file is equally 
clearly a NOTREADY condition.  In between lay more uncertain situations like trying to position the 
current write position after the end-of-file, or trying to read a non-existent file, or using an illegal 
file name.

Some situations are likely to be differently handled in various implementations, but you can assume
that they are handled as either SYNTAX or NOTREADY. Defensive, portable programming requires 
you to check for both. Unfortunately, NOTREADY is not allowed in TRL1, so you have to avoid that
condition if you want maximum compatibility. And due to the very lax restrictions on 
implementations, you should always perform very strict verification on all data returned from any 
file I/O built-in function.

If neither are trapped, SYNTAX will terminate the program while NOTREADY will be ignored, so the
implementor's decision about which of these to use may even depend on the severity of the problem
(i.e. if the problem is small, raising SYNTAX may be a little too strict). Personally, I think SYNTAX 
should be raised in this context only if the value of a parameter is outside its valid range for all 
contexts in which the function might be called.

Example: General NOTREADY condition handler

 Under TRL2 the "correct" way to handle NOTREADY conditions and errors from I/O operations is 
unfortunately very complex. It is shown in this example, in order to demonstrate the procedure:
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myfile = 'MYFILE.DAT'
signal on syntax name syn_handler
call on notready name IO_handler
do i=1 to 10 until res=0

res = lineout(myfile, 'line #'i)
if (res=0) then

say 'Call to LINEOUT() didn"t manage to write out 
data'
end
exit

IO_handler:
syn_handler:

file = condition('D')
say condition('C') 'raised for file' file 'at line' 

sigl':'
say '  ' sourceline(sigl)
say '   State='stream(file,'S') 'reason:' stream(file,'D')
call lineout( condition( 'D' ))   /* try to close */
if condition('C')=='SYNTAX' then

exit 1
else

return

Note the double checking in this example: first the condition handler is set up to trap any 
NOTREADY conditions, and then the return code from LINEOUT() is checked for each call.

As you can see, there is not really that much information that you can retrieve about what went 
wrong. Some systems may have additional sources from which you can get information, e.g. special
commands for the STREAM() built-in function, but these are non-standard and should be avoided 
when writing compatible programs.

 5.13 Common Differences and Problems with Stream 
I/O
This section describes some of the common traps and pitfalls of Rexx I/O.

 5.13.1 Where Implementations are Allowed to Differ

TRL is rather relaxed in its specifications of what an interpreter must implement of the I/O system. 
It recognizes that operating systems differ, and that some details must be left to the implementor to 
decide, if Rexx is to be effectively implemented.  The parts of the I/O subsystem of Rexx where 
implementations are allowed to differ, are:

 The functions LINES() and CHARS() are not required to return the number of lines or 
characters left in a stream. TRL says that if it is impossible or difficult to calculate the numbers, 
these functions may return 1 unless it is absolutely certain that there are no more data left. This 
leads to some rather kludgey programming techniques.

 Implementations are allowed to ignore closing streams, since TRL does not specify a way to do 
this. Often, the closing of streams is implemented as a command, which only makes it more 
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incompatible.

 Check the implementation-specific documentation before using the function LINEOUT(file)
for closing files.

 The difference in the action of closing and flushing a file, can make a Rexx script that works 
under one implementation crash under another, so this feature is of very limited value if you are 
trying to write portable programs.

TRL says that because the operating system environments will differ a lot, and an efficient and 
useful interpreter is the most important goal, implementations are allowed to deviate from the 
standard in any respect necessary in the domain of I/O [TRL2]. Thus, you should never assume 
anything about the I/O system, as the "rules" listed in TRL are only advisory.

 5.13.2 Where Implementations might Differ anyway

In the section above, some areas where the standard allows implementations to differ are listed. In 
an ideal world, that ought to be the only traps that you should need to look out for, but 
unfortunately, the world is not ideal. There are several areas where the requirements set up by the 
standard is quite high, and where implementations are likely to differ from the standard.

These areas are:

 Repositioning at (for the current write position) or beyond the end-of-file may be allowed. On 
some systems, to prohibit that would require a lot of checking, so some systems will probably 
skip that check. At least for some operating systems, the act of repositioning after end-of-file is 
a useful feature.

 Under Unix, it can be used for creating a dynamically sized random access file; do not bother 
about how much space is allocated for the file, just position to the correct "sloth" and write the 
data there. If the data file is sparse, holes might occur in the file; that is parts of the file which 
has not been written, and which is all zeros (and which are therefore not stored on disk.

 Some implementations will use the same position for both the current read position and the 
current write position to overcome these implementations.  Whenever you are doing a read, and 
the previous operation was a write (or vice versa), it is may prove useful to reposition the 
current read (or write) position.

 There might be a maximum linesize for your Rexx interpreter. At least the 50Kb limit on string 
length may apply.

 Handling the situation where another program writes data to a file which is used by the Rexx 
interpreter for reading.

 5.13.3 LINES() and CHARS() are Inaccurate
Because of the large differences between various operating systems, Rexx allows some fuzz in the 
implementation of the LINES() and CHARS() built-in functions.  Sometimes, it is difficult to 
calculate the number of lines or characters in a stream; generally because the storage format of the 
file often requires a linear search through the whole stream to determine that number. Thus, Rexx 
allows an implementation to return the value 1 for any situation where the real number is difficult 
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or impossible to determine. Effectively, an implementation can restrict the domain of return values 
for these two functions only 1 and 0 from these two functions.

Many operating systems store lines using a special end-of-line character sequence. For these 
systems, it is very time-consuming to count the number of lines in a file, as the file must be scanned
for such character sequences. Thus, it is very tempting for an implementor to return the value 1 for 
any situation where there are more than zero lines left.

A similar situation arises for the number of characters left, although it is more common to know this
number, thus it is generally a better chance of CHARS() returning the true number of characters left
than LINES() returning the true number of lines left.

However, you can be fairly sure that if an implementation returns a number greater than 1, then that
number is the real number of lines (or characters) left in the stream. And simultaneously, if the 
number returned is 0, then there is no lines (or characters) left to be read in the stream. But if the 
number is 1, then you will never know until you have tried.

Example: File reading idiom

This example shows a common idiom for reading all contents of a file into Rexx variables using the
LINES() and LINEIN() built-in functions.

i = 1
signal on notready
lleft = lines(file)
do while lleft>0

do i=i to i+lleft
line.i = linein(file)

end
lleft = lines(file)

end
notready:
lines.0 = i-1

Here, the two nested loops iterates over all the data to be read. The innermost loop reads all data 
currently available, while the outermost loop checks for more available data. Implementations 
having a LINES() that return only 0 and 1 will generally iterate the outermost loop many times; 
while implementations that returns the "true" number from LINES() generally only iterates the 
outermost loop once.

There is only one place in this code that LINEIN() is called.  The I variable is incremented at 
only one place, and the variable LINES.0 is set in one clause, too. Some redundancy can be 
removed by setting the WHILE expression to:

do while word(value('lleft',lines(file)) lleft,2)>0

The two assignments to the LLEFT variable must be removed.  This may look more complicated, 
but it decreases the number of clauses having a call to LINES() from two till one. However, it is 
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less certain that this second solution is more efficient, since using VALUE() built-in function can 
be inefficient over "normal" variable references.

 5.13.4 The Last Line of a Stream

How to handle the last line in a stream is sometimes a problem. If you use a system that stores end-
of-lines as special character sequences, and the last part of the data of a stream is an unterminated 
line, then what is returned when you try to read that part of data?

There are three possible solutions: First, it may interpret the end-of-file itself as an implicit end-of-
line, in this case, the partial part of the line is returned, as if it was properly terminated. Second, it 
may raise the NOTREADY condition, since the end-of-file was encountered during reading.  Third, if
there is any chance of additional data being appended, it may wait until such data are available. The 
second and third approaches are suitable for persistent and transient files, respectively.

The first approach is sometimes encountered. It has some problems though. If the end of a stream 
contains the data ABC<NL>XYZ, then it might return the string XYZ as the last line of the stream. 
However, suppose the last line was an empty line, then the last part of the stream would be: 
ABC<NL>. Few would argue that there is any line in this stream after the line ABC. Thus, the 
decision whether the end-of-file is an implicit end-of-line depends on whether the would-be last line
has zero length or not.

An pragmatic solution is to let the end-of-file only be an implicit end-of-file if the characters 
immediately in front of it are not an explicit end-of-line character sequence.

However, TRL gives some indications that an end-of-file is not an implicit end-of-line. It says that 
LINES() returns the number of complete lines left, and that LINEIN() returns a complete line.  
On the other hand, the end-of-line sequence is not rigidly defined by TRL, so an implementor is 
almost free to define end-of-line in just about any terms that are comfortable. Thus, the last line of a
stream may be a source of problem if it is not explicitly terminated by an end-of-line.

 5.13.5 Other Parts of the I/O System

This section lists some of the other parts of Rexx and the environments around Rexx that may be 
considered a part of the I/O system.

[Stack.]
The stack be used to communicate with external environments. At the Rexx side, the 
interface to the stack is the instructions PUSH, PULL, PARSE PULL, and QUEUE; and the 
built-in function QUEUED().  These can be used to communicate with external programs by
storing data to be transferred on the stack.

[The STREAM() built-in function.]
This function is used to control various aspects about the files manipulated with the other 
standard I/O functions. The standard says very little about this function, and leaves it up to 
the implementor to specify the rest. Operations like opening, closing, truncating, and 
changing modes

[The SAY instruction.]
The SAY instruction can be used to write data to the default output stream. If you use 
redirection, you can indirectly use it to write data to a file.

[The ADDRESS instruction.]
The ADDRESS instruction and commands can be used to operate on files, depending on the 
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power of your host environments and operating system.
[The VALUE() built-in function.]

The function VALUE(), when used with three parameters, can be used to communicate with
external host environments and the operating system. However, this depends on the 
implementation of your interpreter.

[SAA API.]
The SAA API provides several operations that can be used to communicate between 
processes. In general, SAA API allows you to perform the operations listed above from a 
binary program written in a language other than Rexx.

And of course, I/O is performed whenever a Rexx program or external function is started.

 5.13.6 Implementation-Specific Information

This section describes some implementations of stream I/O in Rexx.  Unfortunately, this has 
become a very large section, reflecting the fact that stream I/O is an area of many system-specific 
solutions.

In addition, the variations within this topic are rather large.  Regina implements a set of functions 
that are very close to that of TRL2. The other extreme are ARexx and BRexx, which contain a set of
functions which is very close to the standard I/O library of the C programming language.

 5.13.7 Stream I/O in Regina 0.07a

Regina implements stream I/O in a fashion that closely resembles how it is described in TRL2. The 
following list gives the relevant system-specific information.

[Names for standard streams.]
Regina uses <stdout> and <stdin> as names for the standard output and input streams. 
Note that the angle brackets are part of the names.  You may also access the standard error 
stream (on systems supporting this stream) under the name <stderr>.  In addition, the 
nullstring is taken to be equivalent to an empty first parameter in the I/O-related built-in 
functions.

[Implicit opening.]
Regina implicitly opens any file whenever it is first used.

If the first operation is a read, it will be opened in read-only mode. If the first operation is a 
write, it is opened in read-write mode. In this case if the read-write opening does not 
succeed, the file is opened in write-only mode. If the file exists, the opening is non-
destructive, i.e. that the file is not truncated or overwritten when opened, else it is created if 
opened in read-write mode.

If you name a file currently open in read-only mode in a write operation, Regina closes the 
file, and reopens it in read-write mode. The only exception is when you call LINEOUT() 
with both second and third arguments unspecified, which always closes a file, both for 
reading and writing.  Similarly, if the file was opened in write-only mode, and you use it in a
read operation, Regina closes and reopens in read-write mode.

This implicit reopening is enabled by default. You can turn it off by unsetting the extension 
ExplicitOpen.

167



[Separate current positions.]
The environment in which Regina operates (ANSI C and POSIX) does not allow separate 
read and write positions, but only supplies one position for both operations. Regina handles 
this by maintaining the two positions internally, and move the "real" current position back 
and forth depending on whether a read or write operation is next.

[Swapping out file descriptors.]
In order to defend itself against "open-many-close-none" programming, Regina tries to 
"swap out" files that have been unused for some time. Assume that your operating system 
limits Regina to 100 simultaneously open files; when your try to open your 101st file, Regina
closes the least recently used stream, and recycles its descriptor for the new file. You can 
enable or disable this recycling with the SwapFilePtr extension.

During this recycling, Regina only closes the file in the operating system, but retains all vital
information about the file itself. If you re-access the file later, Regina reopens it, and 
positions the current read and write positions at the correct (i.e. previous) positions.  This 
introduces some uncertainties into stream processing. Renaming a file affects it only if it 
gets swapped out. Since the swap operation is something the users do not see, it can cause 
some strange effects.

Regina will not allow a transient stream to be swapped out, since they often are connected to
some sort of active partner in the other end, and closing the file might kill the partner or 
make it impossible to reestablish the stream.  So only persistent files are swapped out.  Thus,
you can still fill the file table in Regina.

[Explicit opening and closing.]
Regina allows streams to be explicitly opened or closed through the use of the built-in 
function STREAM().  The exact syntax of this function is described in section stream. Old 
versions of Regina supported two non-standard built-in functions OPEN() and CLOSE() 
for these operations. These functions are still supported for compatibility reasons, but might 
be removed in future releases.  Their availability is controlled by the OpenBif and 
CloseBif extensions.

[Truncation after writing lines.]
If you reposition line-wise the current write position to the middle of a file, Regina truncates
the file at the new position. This happens whether data is written during the LINEOUT() or 
not.  If not, the file might contain half a line, some lines might disappear, and the linecount 
would in general be disrupted.  The availability of this behavior is controlled by 
LineOutTrunc, which is turned on by default.

Unfortunately, the operation of truncating a file is not part of POSIX, and it might not exist 
on all systems, so on some rare systems, this truncating will not occur.  In order to be able to
truncate a file, your machine must have the ftruncate() system call in C. If you don't 
have this, the truncating functionality is not available. 

[Caching info on lines left.]
When Regina executes the built-in function LINES() for a persistent stream, it caches the 
number of lines left as an attribute to the stream. In subsequent calls to LINEIN(), this 
number is updated, so that subsequent calls to LINES() can retrieve the cached number 
instead of having to re-scan the rest of the stream, provided that the number is still valid. 
Some operations will invalidate the count: repositioning the current read position; reading 
using the character oriented I/O, i.e. CHARIN(); and any write operation by the same 
interpreter on the stream. Ideally, any write operation should invalidate the count, but that 
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might require a large overhead before any operation, in order to check whether the file has 
been written to by other programs.

This functionality can be controlled by the extension called CacheLineNo, which is 
turned on by default. Note that if you turn that off, you can experience a serious decrease in 
performance.

The following extra built-in functions relating to stream I/O are defined in Regina. They are 
provided for extra support and compatibility with other systems. Their support may be discontinued 
in later versions, and they are likely to be moved to a library of extra support.

CLOSE(streamid)

Closes the stream named by streamid. This stream must have been opened by implicit open or by 
the OPEN function call earlier.  The function returns 1 if there was any file to close, and 0 if the file 
was not opened. Note that the return value does not indicate whether the closing was successful. 
You can use the extension named CloseBif with the OPTIONS instruction to select or remove 
this function.  This function is now obsolete, instead you should use:

STREAM( streamid, 'Command', 'CLOSE' )

CLOSE(myfile) 1 if stream was open

CLOSE('NOSUCHFILE') 0 if stream didn't exist

OPEN(streamid,access)

Opens the stream named streamid with the access access. If access is not specified, the access R 
will be used. access may be the following characters. Only the first character of the access is 
needed.

[R]
(Read) Open for read access. The file pointer will be positioned at the start of the file, and 
only read operations are allowed.

[W]
(Write) Open for write access and position the current write position at the end of the file.  
An error is returned if it was not possible to get appropriate access.

The return value from this function is either 1 or 0, depending on whether the named stream is in 
opened state after the operation has been performed.

Note that if you open the files "foobar" and "./foobar" they will point to the same physical 
file, but Regina interprets them as two different streams, and will open a internal file descriptor for 
each one.  If you try to open an already open stream, using the same name, it will have no effect.

169



You can use the extension OpenBif with the OPTIONS instruction to control the availability of 
this function.  This function is now obsolete, but is still kept for compatibility with other interpreters
and older versions of Regina. Instead, with Regina you should use:

STREAM( streamid, 'C', 'READ'|'WRITE'|'APPEND'|'UPDATE' )

OPEN(myfile, 'write') 1 maybe, if successful
OPEN(passwd, 'Write') 0 maybe, if no write access

OPEN('DATA', 'READ') 0 maybe, if successful
The return value from this function is either 1 or 0, depending on whether the named stream is in 
opened state after the operation has been performed.

 5.13.8 Functionality to be Implemented Later

This section lists the functionality not yet in Regina, but which is intended to be added later. Most 
of these are fixes to problems, compatibility modes, etc.

[Indirect naming of streams.]
Currently, streams are named directly, which is a convenient.  However, there are a few 
problems: for instance, it is difficult to write to a file which name is <stdout>, simply 
because that is a reserved name. To fix this, an indirect naming scheme will be provided 
through the STREAM()< built-in function. The functionality will resemble the OPEN() 
built-in function of ARexx.

[Consistence in filehandle swapping.]
When a file handle is currently swapped out in order to avoid filling the system file table, 
very little checking of consistency is currently performed. At least, vital information about 
the file should be retained, such as the inode and file system for Unix machines retrieval by 
the fstat() call. When the file is swapped in again, this information must be checked 
against the file which is reopened. If there is a mismatch, NOTREADY should be raised.  
Similarly, when reopening a file because of a new access mode is requested, the same 
checking should be performed.

[Files with holes.]
Regina will be changed to allow it to generate files with holes for system where this is 
relevant. Although standard Rexx does not allow this, it is a very common programming 
idiom for certain systems, and should be allowed. It will, however, be controllable through a
extension called SparseFiles.

 5.13.9 Stream I/O in ARexx 1.15

ARexx differs considerably from standard Rexx with respect to stream I/O. In fact, none of the 
standard stream functionality of Rexx is available in ARexx. Instead, a completely distinct set of 
functions are used. The differences are so big, that it is useless to describe ARexx stream I/O in 
terms of standard Rexx stream I/O, and everything said so far in this chapter is irrelevant for 
ARexx. Therefore, we explain the ARexx functionality from scratch.

All in all, the ARexx file I/O interface resembles the functions of the Standard C I/O library, 
probably because ARexx is written in C, and the ARexx I/O functions are "just" interfaces to the 
underlying C functions. You may want to check up the documentation for the ANSI C I/O library as 
described in [ANSIC], [KR], and [PJPlauger].
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ARexx uses a two level naming scheme for streams. The file names are bound to a stream name 
using the OPEN() built-in function. In all other I/O functions, only the stream name is used.

OPEN(name,filename[,mode])

You use the OPEN() built-in function to open a stream connected to a file called filename in 
AmigaDOS. In subsequent I/O calls, you refer to the stream as name. These two names can be 
different.

The name parameter cannot already be in use by another stream.  If so, the OPEN() function fails. 
Note that the name parameter is case-sensitive. The filename parameter is not strictly case-sensitive:
the case used when creating a new file is preserved, but when referring to an existing file, the name 
is case-insensitive. This is the usual behavior of AmigaDOS.

If any of the other I/O operations uses a stream name that has not been properly opened using 
OPEN(), that operation fails, because ARexx has no auto-open-on-demand feature.

The optional parameter mode can be any of Read, Write, or Append.  The mode Read opens an 
existing file and sets the current position to the start of the file. The mode Append is identical to 
Read, but sets the current positions to the end-of-file. The mode Write creates a new file, i.e. if a 
file with that name already exists, it is deleted and a new file is created. Thus, with Write you 
always start with an empty file.  Note that the terms "read," "write," and "append" are only remotely
connected to the mode in which the file is opened.  Both reading and writing are allowed for all of 
these three modes; the mode names only reflect the typical operations of these modes.

The result from OPEN() is a boolean value, which is 1 if a file by the specified name was 
successfully opened during the OPEN() call, and 0 otherwise.

The number of simultaneously open files is no problem because AmigaDOS allocates files handles 
dynamically, and thus only limited by the available memory. One system managed 2000 
simultaneously open files during a test.

OPEN('infile', 'work:DataFile') 1 if successful

OPEN('work', 'RAM:FooBar', 'Read') 0 if didn't exist
OPEN('output', 'TmpFile', 'W') 1 (re)creates file

CLOSE(name)

You use the CLOSE() built-in function to close a stream.  The parameter name must match the first
parameter in a call to OPEN() earlier in the same program, and must refer to an open stream.  The 
return value is a boolean value that reflects whether there was a file to close (but not whether it was 
successfully closed).

CLOSE('infile') 1 if stream was previously open
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CLOSE('outfile') 0 if stream wasn't previously open

WRITELN(name,string)

The WRITELN() function writes the contents of string as a line to the stream name. The name 
parameter must match the value of the first parameter in an earlier call to OPEN(), and must refer 
to an open stream. The data written is all the characters in string immediately followed by the 
newline character (ASCII <Ctrl-J> for AmigaDOS).

The return value is the number of characters written, including the terminating newline. Thus, a 
return value of 0 indicates that nothing was written, while a value which is one more than the 
number of characters in string indicates that all data was successfully written to the stream.

When writing a line to the middle of a stream, the old contents is written over, but the stream is not 
truncated; there is no way to truncate a stream with the ARexx built-in functions. This overwriting 
can leave partial lines in the stream.

WRITELN('tmp', 'Hello, world!') 14 if successful
WRITELN('work', 'Hi there') 0 nothing was written

WRITELN('tmp', 'Hi there') 5 partially successful

WRITECH(name,string)

The WRITECH() function is identical to WRITELN(), except that the terminating newline 
character is not added to the data written out.  Thus, WRITELN() is suitable for line-wise output, 
while WRITECH() is useful for character-wise output.

WRITECH('tmp', 'Hello, world!') 13 if successful

WRITECH('work', 'Hi there') 0 nothing was written
WRITECH('tmp', 'Hi there') 5 partially successful

READLN(name)

The READLN() function reads a line of data from the stream referred to by name. The parameter 
name must match the first parameter of an earlier call to OPEN(), i.e. it must be an open stream.

The return value is a string of characters which corresponds to the characters in the stream from and
including the current position forward to the first subsequent newline character found. If no newline
character is found, the end-of-file is implicitly interpreted as a newline and the end-of-file state is 
set. However, the data returned to the user never contains the terminating end-of-line.

To differ between the situation where the last line of the stream was implicitly terminated by the 
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end-of-file and where it was explicitly terminated by an end-of-line character sequence, use the 
EOF() built-in function. The EOF() returns 1 in the former case and 0 in the latter case.

There is a limit in ARexx on the length of lines that you can read in one call to READLN(). If the 
length of the line in the stream is more than 1000 characters, then only the first 1000 characters are 
returned. The rest of the line can be read by additional READLN() and READCH() calls. Note that 
whenever READLN() returns a string of exactly 1000 characters, then no terminating end-of-line 
was found, and a new call to READLN() must be executed in order to read the rest of the line.

READLN('tmp') Hello 
world!

maybe

READLN('work') maybe, if unsuccessful

READCH(name[,length])

The READCH() built-in function reads characters from the stream named by the parameter name, 
which must correspond to the first parameter in a previous call to OPEN(). The number of 
characters read is given by length, which must be a non-negative integer.  The default value of 
length is 1.

The value returned is the data read, which has the length corresponding to the length parameter if no
errors occurred.

There is a limit in ARexx for the length of strings that can be read in one call to READCH(). The 
limit is 65535 bytes, and is a limitation in the maximum size of an ARexx string.

READCH('tmp',3) Hel maybe
READCH('tmp') l maybe

READCH('tmp',6) o worl maybe

EOF(name)

The EOF() built-in function tests to see whether the end-of-file has been seen on the stream 
specified by name, which must be an open stream, i.e. the first parameter in a previous call to 
OPEN().

The return value is 1 if the stream is in end-of-file mode, i.e. if a read operation (either READLN() 
or READCH()) has seen the end-of-file during its operation. However, reading the last character of 
the stream does not put the stream in end-of-file mode; you must try to read at least one character 
past the last character. If the stream is not in end-of-file mode, the return value is 0.

Whenever the stream is in end-of-file mode, it stays there until a call to SEEK() is made. No read 
or write operation can remove the end-of-file mode, only SEEK() (and closing followed by 
reopening).
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EOF('tmp') 0 maybe
EOF('work') 1 maybe

SEEK(name,offset[,mode])

The SEEK() built-in function repositions the current position of the file specified by the parameter 
name, which must correspond to an open file, i.e. to the first parameter of a previous call to 
OPEN(). The current position in the file is set to the byte referred to by the parameter offset. Note 
that offset is zero-based, so the first byte in the file is numbered 0. The value returned is the current 
position in the file after the seek operation has been carried through, using Beginning mode.

If the current position is attempted set past the end-of-file or before the beginning of the file, then 
the current position is not moved, and the old current position is returned. Note that it is legal to 
position at the end-of-file, i.e. the position immediately after the last character of the file. If a file 
contains 12 characters, the valid range for the resulting new current position is 0-12.

The last parameter, mode, can take any of the following values:

Beginning, Current, or End. It specify the base of the seeking, i.e. whether it is relative to the 
first byte, the end-of-file position, or the old current position. For instance: for a 20 byte file with 
current position 3, then offset 7 for base Beginning is equivalent to offset -13 for base End and 
offset 4 for Current. Note that only the first character of the mode parameter is required, the rest 
of that parameter is ignored.

SEEK('tmp', 12, 'B') 12 if successful
SEEK('tmp', -4, 'Begin') 12 if previously at 12

SEEK('tmp', -10, 'E') 20 if length is 30
SEEK('tmp', 5) 17 if previously at 12

SEEK('tmp', 5, 'Celcius') 17 only first character in mode matters
SEEK('tmp', 0, 'B') 0 always to start of file

 5.13.10 Main Differences from Standard Rexx

Now, as the functionality has been explained, let me point out the main conceptual differences from 
standard Rexx; they are:

[Current position.]
ARexx does not differ between a current read and write position, but uses a common current
position for both reading and writing.  Further, this current position (which it is called in this
documentation) can be set to any byte within the file, and to the end-of-file position. Note 
that the current position is zero-based.

[Indirect naming.]
The stream I/O operations in ARexx do not get a parameter which is the name of the file. 
Instead, ARexx uses an indirect naming scheme. The OPEN() built-in function binds a 
Rexx stream name for a file to a named file in the AmigaDOS operating system; and later, 
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only the Rexx stream name is used in other stream I/O functions operating on that file.
[Special stream names.]

There are two special file names in ARexx: STDOUT and STDIN, which refer to the 
standard input file and standard output file. With respect to the indirect naming scheme, 
these are not file names, but names for open streams; i.e. they can be used in stream I/O 
operations other than OPEN(). For some reason, is it possible to close STDIN but not 
STDOUT.

[NOTREADY not supported.]
ARexx has no NOTREADY condition. Instead, you must detect errors by calling EOF() and 
checking the return codes from each I/O operations.

[Other things missing.]
In ARexx, all files must be explicitly opened. There is no way to reposition line-wise, except
for reading lines and keeping a count yourself.

Of course, ARexx also has a lot of functionality which is not part of standard Rexx, like relative 
repositioning, explicit opening, an end-of-file indicator, etc. But this functionality is descriptive 
above in the descriptions of extended built-in functions, and it is of less interest here.

When an ARexx script has opened a file in Write mode, other ARexx scripts are not allowed to 
access that file. However, if the file is opened in Read or Append mode, then other ARexx scripts 
can open the file too, and the same state of the contents of the file is seen by all scripts.

Note that it is difficult to translate between using standard Rexx stream I/O and ARexx stream I/O. 
In particular, the main problem (other than missing functionality in one of the systems) is the 
processing of end-of-lines. In standard Rexx, the end-of-file is detected by checking whether there 
is more data left, while in ARexx one checks whether the end-of-file has been read. The following 
is a common standard Rexx idiom:

while lines('file')>0   /* for each line available */
say linein('file')   /* process it */

end

In ARexx this becomes:

tmp = readln('file')    /* attempt to read first line */
do until eof('file')    /* if EOF was not seen */

say tmp              /* process line */
tmp = readln('file') /* attempt to read next line */

end

It is hard to mechanically translate between them,

because of the lack of an EOF() built-in function in standard Rexx, and the lack of a LINES() 
built-in function in ARexx.

Note that in the ARexx example, an improperly terminated last line is not read as an independent 
line, since READLN() searches for an end-of-line character sequence. Thus, in the last invocation 
tmp is set to the last unterminated line, but EOF() returns true too. To make this different, make 
the UNTIL subterm of the DO loop check for the expression EOF('file') && TMP<>".
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The limit of 1000 characters for READLN() means that a generic line reading routine in ARexx 
must be similar to this:

readline: procedure
parse arg filename
line = ''
do until length(tmpline)<1000

tmpline = readln(filename)
line = line || tmpline

end
return line

This routine calls READLN() until it returns a line that is shorter than 1000 characters. Note that 
end-of-file checking is ignored, since READLN() returns an empty string a the end-of-stream.

 5.13.11 Stream I/O in BRexx 1.0b

BRexx contains a set of I/O which shows very close relations with the C programming language I/O
library. In fact, you should consider consulting the C library documentation for in-depth 
documentation on this functionality.

BRexx contains a two-level naming scheme: in Rexx, streams are referred to by a stream handle, 
which is an integer; in the operating system files are referred to by a file name, which is a normal 
string.  The function OPEN() is used to bind a file name to a stream handle. However, BRexx I/O 
functions generally have the ability to get a reference either as a file name and a stream handle, and 
open the file if appropriate. However, if the name of a file is an integer which can be interpreted as a
file descriptor number, it is interpreted as a descriptor rather than a name. Whenever you use BRexx
and want to program robust code, always use OPEN() and the descriptor.

If a file is opened by specifying the name in a I/O operation other than OPEN(), and the name is an
integer and only one or two higher than the highest current file descriptor, strange things may 
happen.

Five special streams are defined,  having the pseudo file names: <STDIN>, <STDOUT>, 
<STDERR>, <STDAUX>, and <STDPRN>; and are assigned pre-defined stream handles from 0 to 
4, respectively. These refer to the default input, default output, and default error output, default 
auxiliary output, and printer output. The two last generally refer to the COM1: and LPT1: devices 
under MS-DOS. Either upper or lower case letter can be used when referring to these four special 
names.

However, note that if any of these five special files are closed, they can not be reopened again. The 
reopened file will be just a normal file, having the name e.g. <STDOUT>.

There is a few things you should watch out for with the special files.  I/O involving the <STDAUX> 
and <STDPRN> can cause the Abort, Retry, Ignore message to be shown once for each 
character that was attempted read or written. It can be boring and tedious to answer R or I if the text
string is long. If A is answered, BRexx terminates.

You should never write data to file descriptor 0 (<STDIN>), apparently, it will only disappear. 
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Likewise, never read data to file descriptors 1 and 2 (<STDOUT> and <STDERR>), the former 
seems to terminate the program while the latter apparently just returns the nullstring. Also be careful
with reading from file descriptors 3 and 4, since your program may hang if no data is available.

OPEN(file,mode)

The OPEN() built-in function opens a file named by file, in mode mode, and returns an integer 
which is the number of the stream handle assigned to the file. In general, the stream handle is a non-
negative integer, where 0 to 4 are pre-defined for the default streams. If an error occurred during 
the open operation, the value -1 is returned.

The mode parameter specifies the mode in which the file is opened. It consists of two parts: the 
access mode, and the file mode.  The access mode part consists of one single character, which can 
be r for read, w for write, and a for append. In addition, the + character can be appended to open a 
file in both read and write mode.  The file mode part can also have of one additional character 
which can be t for text files and b for binary files. The t mode is default.

The following combinations of + and access mode are possible:

r is non-destructive open for reading; w is destructive open for write-only mode; a is non-
destructive open for in append-only mode, i.e. only write operations are allowed, and all write 
operations must be performed at the end-of-file; r+ is non-destructive open for reading and writing;
w+ is destructive open for reading and writing; and a+ is non-destructive open in append update, 
i.e. reading is allowed anywhere, but writing is allowed only at end-of-file. Destructive mode means
that the file is truncated to zero length when opened.

In addition, the b and t characters can be appended in order to open the file in binary or text mode.

These modes are the same as under C, although the t mode character is strictly not in ANSI C. Also
note that r, w, and a are mutually exclusive, but one of them must always be present. The mode + is
optional, but if present, it must always come immediately after r, w, or a. The t and b modes are 
optional and mutually exclusive; the default is t. If present, t or b must be the last character in the 
mode string.

open('myfile','w')    7 perhaps

open('no.such.file','r') -1 if non-existent
open('c:tmp','r+b') 6 perhaps

If two file descriptors are opened to the same file, only the most recently of them works. However, 
if the most recently descriptor is closed, the least recently starts working again. There may be other 
strange effects too, so try avoid reopening a file that is already open.

CLOSE(file)
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The CLOSE() built-in function closes a file that is already open. The parameter file can be either a 
stream handle returned from OPEN() or a file name which has been opened (but for which you do 
not known the correct stream handle).

The return value of this function seems to be the nullstring in all cases.

close(6) if open
close(7) if not open

close('foobar') perhaps

EOF(file)

The EOF() built-in function checks the end-of-file state for the stream given by file, which can be 
either a stream descriptor or a file name. The value returned is 1 if the end-of-file status is set for 
the stream, and 0 if it is cleared. In addition, the value -1 is returned if an error occurred, for 
instance if the file is not open.

The end-of-file indicator is set whenever an attempt was made to read at least one character past the
last character of the file. Note that reading the last character itself will not set the end-of-file 
condition.

eof(foo) 0 if not at eof

eof('8') 1 if at eof
eof('no.such.file') -1 if file isn't open

READ([file][,length])

The READ() built-in function reads data from the file referred to by the file parameter, which can 
be either a file name or a stream descriptor. If it is a file name, and that file is not currently open, 
then BRexx opens the file in mode rt. The default value of the first parameter is the default input 
stream.  The data is read from and including the current position.

If the length parameter is not specified, a whole line is read, i.e. reading forwards to and including 
the first end-of-line sequence.  However, the end-of-line sequence itself is not returned.  If the 
length parameter is specified, it must be a non-negative integer, and specified the number of 
characters to read.

The data returned is the data read, except that if length is not specified, the terminating end-of-line 
sequence is stripped off. If the last line of a file contains a string unterminated by the end-of-string 
character sequence, then the end-of-file is implicitly interpreted as an end-of-line. However, in this 
case the end-of-file state is entered, since the end-of-stream was found while looking for an end-of-
line.

read('foo') one line reads a complete line

178



read('foo',5) anoth reads parts of a line

read(6) er line using a file descriptor
read() hello 

there
perhaps, reads line from default input 
stream

WRITE([file][,[string][,dummy]])

The WRITE() built-in function writes a string of data to the stream specified by the file parameter, 
or by default the default output stream. If specified, file can be either a file name or a stream 
descriptor. If it is a file name, and that file is not already open, it is opened using wt mode.

The data written is specified by the string parameter.

The return value is an integer, which is the number of bytes written during the operation. If the file 
is opened in text mode, all ASCII newline characters are translated into ASCII CRLF character 
sequences. However, the number returned is not affected by this translation; it remains independent 
of any text of binary mode.  Unfortunately, errors while writing is seldom trapped, so the number 
returned is generally the number of character that was supposed to be written, independent of 
whether they was actually written or not.

If a third parameter is specified, the data is written as a line, i.e. including the end-of-line sequence. 
Else, the data is written as-is, without any end-of-line sequence. Note that with BRexx, the third 
parameter is considered present if at least the comma in front of it--the second comma--is present. 
This is a bit inconsistent with the standard operations of the ARG() built-in function. The value of 
the third parameter is always ignored, only its presence is considered.

If the second parameter is omitted, only an end-of-line action is written, independent of whether the 
third parameter is present or not.

write('bar','data') 4 writes four bytes
write('bar','data','nl') 4+?? write a line

write('bar','data',) 4+?? same as previous

SEEK(file[,[offset][,origin]])

The SEEK() built-in function moves the current position to a location in the file referred to by file. 
The parameter file can be either a file name (which must already be open) or a stream descriptor. 
This function does not implicitly open files that is not currently open.

The parameter offset determines the location of the stream and must be an integer. It defaults to 
zero. Note that the addressing of bytes within the stream is zero-based.

The third parameter can be any of TOF, CUR, or EOF, in order to set the reference point in which to 
recon the offset location. The three strings refer to top-of-file, current position, and end-of-file, and 
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either upper or lower case can be used. The default value is ???.

The return value of this function is the absolute position of the position in the file after the seek 
operation has been performed.

The SEEK() function provides a very important additional feature. Whenever a file opened for 
both reading and writing has been used in a read operation and is to be used in a write operation 
next (or vice versa), then a call to SEEK() must be performed between the two I/O calls. In other 
words, after a read only a seeking and reading may occur; after a write, only seeking and writing 
may occur; and after a seek, reading, writing, and seeking may occur.

 5.13.12 Problems with Binary and Text Modes

Under the MS-DOS operating system, the end-of-line character sequence is <CR><LF>, while in 
C, the end-of-line sequence is only <LF>.  This opens for some very strange effects.

When an MS-DOS file is opened for read in text mode by BRexx, all <CR><LF> character 
sequences in file data are translated to <LF> when transferred into the C program. Further, BRexx, 
which is a C program, interprets <LF> as an end-of-line character sequence. However, if the file is 
opened in binary mode, then the first translation from <CR><LF> in the file to <LF> into the C 
program is not performed. Consequently, if a file that really is a text file is opened as a binary file 
and read line-wise, all lines would appear to have a trailing <CR> character.

Similarly, <LF> written by the C program is translated to <CR><LF> in the file.  This is always 
done when the file is opened in text mode. When the file is opened in binary mode, all data is 
transferred without any alterations. Thus, when writing lines to a file which is opened for write in 
binary mode, the lines appear to have only <LF>, not <CR><LF>. If later opened as a text file, this 
is not recognized as an end-of-line sequence.

Example: Differing end-of-lines

Here is an example of how an incorrect choice of file type can corrupt data. Assume BRexx running
under MS-DOS, using <CR><LF> as a end-of-line sequence in text files, but the system calls 
translating this to <LF> in the file I/O interface. Consider the following code.

file = open('testfile.dat', 'wt')      /* text mode */
call write file, '45464748'x, 'dummy'  /* i.e. 'abcd' */
call write file, '65666768'x, 'dummy'  /* i.e. 'ABCD' */
call close file
file = open('testfile.dat', 'rb')      /* binary mode */
say c2x(read(file))                    /* says '454647480D' 
*/
say c2x(read(file))                    /* says '656667680D' 
*/
call close file

Here, two lines of four characters each are written to the file, while when reading, two lines of five 
characters are read. The reason is simply that the writing was in text mode, so the end-of-line 
character sequence was <CR><LF>; while the reading was in binary mode, so the end-of-line 
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character sequence was just <LF>. Thus, the <CR> preceding the <LF> is taken to be part of the 
line during the read.

To avoid this, be very careful about using the correct mode when opening files. Failure to do so will
almost certainly give strange effects.
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 6 Extensions
This chapter describes how extensions to Regina are implemented. The whole contents of this 
chapter is specific for Regina.

 6.1 Why Have Extensions
Why do we need extensions? Well, there are a number of reasons, although not all of these are very 
good reasons:

 Adaptations to new environments may require new functionality in order to easily interface to 
the operating system.

 Extending the language with more power, to facilitate programming.

 Sometimes, a lot of time can be saved if certain assumptions are met, so an extension might be 
implemented to allow programmers to take shortcuts.

 When a program is ported from one platform to another, parts of the code may depend of non-
standard features not available on the platform being ported to. In this situation, the availability 
of extensions that implement the feature may be of great help to the programmer.

 The implementor had some good idea during development.

 Backwards compatibility.

Extensions arise from holes in the functionality. Whether they will survive or not depends on how 
they are perceived by programmers; if perceived as useful, they will probably be used and thus 
supported in more interpreters.

 6.2 Extensions and Standard Rexx
In standard Rexx, the OPTIONS instruction provides a "hook" for extensions. It takes any type of 
parameters, and interprets them in a system-dependent manner.

The format and legal values of the parameters for the OPTIONS instruction is clearly 
implementation dependent [TRL2, p62].

 6.3 Specifying Extensions in Regina
In Regina there are three level of extensions. Each independent extension has its own name. Exactly
what an independent extension is, will depend on the viewer, but a classification has been done, and
is listed at the end of this chapter.

At the lowest level are these "atomic" extensions.  Then there are some "meta-extensions". These 
are collections of other extensions which belong together in some manner. If you need the extension
for creating "buffers" on the stack, it would be logical to use the extension to remove buffers from 
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the stack too. Therefore, all the individual extensions for operations that handle buffers in the stack 
can be named by such a "meta-extensions". At the end of this chapter, there is a list of all the meta-
extensions, and which extensions they include.

At the top is "standards". These are sets of extensions that makes the interpreter behave in a fashion 
compatible with some standard.  Note that "standard" is used very liberally, since it may refer to 
other implementations of Rexx. However, this description of how the extensions are structured is 
only followed to some extent. Where practical, the structure has been deviated.

 6.4 The Trouble Begins
There is one very big problem with extensions. If you want to be able to turn them on and off during
execution, then your program has to be a bit careful.

More and more Rexx interpreters (including Regina parsing the program when the interpreter is 
started. The "old" way was to postpone the parsing of each clause until it was actually executed.  
This leads to the problem mentioned.

Suppose you want to use an extension that allows a slightly different syntax, for the sake of the 
argument, let us assume that you allow an expression after the SELECT keyword. Also assume that 
this extension is only allowed in extended mode, not in "standard mode".  However, since Regina 
parses the source code only once (typically at the starts of the program), the problem is a catch-22: 
the extension can only be turned on after parsing the program, but it is needed before parsing. This 
also applies to a lot of other Rexx interpreters, and all Rexx compilers and preprocessors.

If the extension is not turned on during parsing, it will generate a syntax error, but the parsing is all 
done before the first clause is executed. Consequently, this extension can not be turned on during 
execution, it has to be set before the parsing starts.

Therefore, there are two alternative ways to invoke a set of extensions before the Rexx program is 
parsed:

 It can be invoked by setting an environment variable, which must be a string of the same format 
as the parameters to the OPTIONS clause. Regina supports this mechanism by the use of the 
REGINA_OPTIONS environment variable.

 It can be invoked by using a command line option to the interpreter -o; which must be a string 
of the same format as the parameters to the OPTIONS clause. The command line switch 
overwrites any option specified in the  REGINA_OPTIONS environment variable.

 6.5 The Format of the OPTIONS clause
The format of the OPTIONS clause is very simple, it is followed by any Rexx string expression, 
which is interpreted as a set of space separated words. The words are treated strictly in order from 
left to right, and each word can change zero or more extension settings.

Each extension has a name. If the word being treated matches that name, that extension will be 
turned on. However, if the word being treated matches the name of an extension but has the prefix 
NO, then that extension is turned off. If the word does not match any extensions, then it is simply 
ignored, without creating any errors or raising any conditions.
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Example: Extensions changing parsing

An example of this is the LINES BIF. In the following piece of code the same BIF returns different 
data:

/* file 'aa' contains 5 lines */
options FAST_LINES_BIF_DEFAULT
do i=1 to 2

if i=2 then OPTIONS NOFAST_LINES_BIF_DEFAULT
say lines('aa')

end

In the first iteration of the loop, LINES('aa') returns 1, indicating that there is at least 1 line 
remaining the the stream 'aa'. However, in the second iteration of the loop, LINES('aa') will return 
5, indicating that there are 5 lines remaining in the stream.

Regina's frequent usage of extensions may slow down execution. To illustrate how this can happen, 
consider the OPEN() extra built-in function. As this is an extension, it might be dynamically 
included and excluded from the scope of currently defined function.  Thus, if the function is used in 
a loop, it might be in the scope during the first iteration, but not the second. Thus, Regina can not 
cache anything relating to this function, since the cached information may be outdated later. As a 
consequence, Regina must look up the function in the table of functions for each invocation. To 
avoid this, you can set the extension CACHEEXT, which tells Regina to cache info whenever 
possible, without regards to whether this may render useless later executions of OPTIONS.

 6.6 The Fundamental Extensions
Here is a description of all "atomic" extensions in Regina:

[AREXX_BIFS]
This option allows the user to enable or disable the AREXX BIFs introduced into Regina 
3.1.  The default is AREXX_BIFS on Amiga and AROS, but NOAREXX_BIFS on all other 
platforms.

[AREXX_SEMANTICS]
With the introduction of AREXX BIFs into Regina 3.1, differences in the semantics of a 
number of BIFs resulted. These BIFs that differ between Standard Regina and AREXX are 
OPEN(), CLOSE() and EOF(). This OPTION specifies that the AREXX semantics be 
used for these BIFs.  The default is to use Regina semantics for these BIFs.

[BUFTYPE_BIF]
Allows calling the built-in function BUFTYPE(), which will write out all the contents of 
the stack, indicating the buffers, if there are any. The idea is taken from VM/CMS, and its 
command named BUFTYPE.

[CALLS_AS_FUNCS]
Allows the old broken syntax of :

call myfunc(arg1,arg2)
New programs should use the standard syntax for the CALL instruction. As the 
determination of invalid syntax is done before the code is executed, then this OPTION can 
only be specified using the REGINA_OPTIONS environment variable. 
NOCALLS_AS_FUNCS is the default.
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[CACHEEXT]
Tells Regina that information should be cached whenever possible, even when this will 
render future execution of the OPTIONS instruction useless. Thus, if you use e.g. the 
OPEN() extra built-in function, and you set CACHEEXT, then you may experience that the 
OPEN() function does not disappear from the current scope when you set the 
NOOPEN_BIF extension.

Whether or not a removal of an extension really does happen is unspecified when 
CACHEEXT has been called at least once.  Effectively, info cached during the period when 
CACHEEXT was in effect might not be "uncached". The advantage of CACHEEXT is 
efficiency when you do not need to do a lot of toggling of some extension.

[DESBUF_BIF]
Allows calling the built-in function DESBUF(), to remove all contents and all buffers from 
the stack. This function is an idea taken from the program by the same name under 
VM/CMS.

[DROPBUF_BIF]
Allows calling the built-in function DROPBUF(), to removed one of more buffers from the 
stack. This function is an idea take from the program by the same name under VM/CMS.

[EXT_COMMANDS_AS_FUNCS]
When Regina resolves an expression to a function, and that function is not a built-in or a 
registered external function, Regina attempts to execute the function as an operating system 
command. With NOEXT_COMMANDS_AS_FUNCS set, Regina will return error 43; "Routine
not found". EXT_COMMANDS_AS_FUNCS is the default.

[FAST_LINES_BIF_DEFAULT]
The LINES() BIF in versions of Regina prior to 0.08g returned the actual number of lines 
available in a stream. Since then, the LINES() BIF has been changed to only return 0 or 1. 
This was done for two reasons. First, it is faster, and secondly. the ANSI standard allows for 
an option to return the actual number of lines. This OPTION is for backwards compatibility 
with programs written assuming the prior behavior of the LINES() BIF. 
FAST_LINES_BIF_DEFAULT is the default.

[FLUSHSTACK]
Tells the interpreter that whenever a command clause instructs the interpreter to flush the 
commands output on the stack, and simultaneously take the input from the stack, then the 
interpreter will not buffer the output but flush it to the real stack before the command has 
terminated. That way, the command may read its own output.  The default setting for Regina
is not to flush, i.e. NOFLUSHSTACK, which tells interpreter to temporary buffer all output 
lines, and flush them to the stack when the command has finished.

[HALT_ON_EXT_CALL_FAIL]
This options tells the interpreter that when a called external routine fails the caller halts with 
a syntax error 40.1. This behaviour also occurs with the STRICT_ANSI option. 
NOHALT_ON_EXT_CALL_FAIL is the default.

[INTERNAL_QUEUES]
Regina implements multiple named queues both as part of the interpreter, and as an external 
resource. If a queue name has the character '@' embedded, Regina will assume this to be an 
external queue name. This OPTION allows the exclusive use of Regina's internal queuing 
mechanism regardless of the queue name. NOINTERNAL_QUEUES is the default.
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[LINEOUTTRUNC]
This options tells the interpreter that whenever the LINEOUT() built-in function is 
executed for a persistent file, the file will be truncated after the newly written line, if 
necessary. This is the default setting of Regina, unless your system does not have the 
ftruncate() system call.

[MAKEBUF_BIF]
Allows calling the built-in function MAKEBUF(), to create a buffer on the stack. This 
function is an idea taken from a program by the same name under VM/CMS.

[PRUNE_TRACE]
Makes deeply nested routines be displayed at one line. Instead of indenting the trace output 
at a very long line (possibly wrapping over several lines on the screen). It displays [...] at
the start of the line, indicating that parts of the white space of the line has been removed. 
PRUNE_TRACE is the default.

[QUEUES_301]
This OPTION changes the behaviour of external queue names. In Regina 3.1 meaning was 
given to queue names.  If a queue name had '@' in its name, it was identified as an external 
queue (requiring rxstack to be running). Before 3.1, any time RXQUEUE BIF was used, it 
always referenced an external queue. New programs should use the naming convention to 
identify external queues, because you will be able to use internal of external queues in other 
instructions like ADDRESS.WITH. The default is NOQUEUES_301.

[REGINA_BIFS]
This OPTION allows the user to turn on all non-ANSI extension BIFs. The default is 
REGINA_BIFS.

[SINGLE_LINE_COMMENTS]
By default Regina supports the NetRexx and ooRexx single line comment marker; '–'. (two 
minus signs abutted). This will break code that expects '–' to be semantically equivalent to 
'+'. To remove single line comments,  use NOSINGLE_LINE_COMMENTS. As the 
determination of single line comments is done before code is executed then this OPTION 
can only be specified using the REGINA_OPTIONS environment variable or the '-o' 
command line switch. The default is SINGLE_LINE_COMMENTS.

[STDOUT_FOR_STDERR]
All output that Regina would normally write to stderr, such as TRACE output and errors, are
written to stdout instead. This is useful if you need to capture TRACE output and normal 
output from SAY to a file in the order in which the lines were generated. The default is 
NOSTDOUT_FOR_STDERR.

[STRICT_ANSI]
This OPTION results in interpretation of a program to strict ANSI standards, and will reject 
any Regina extensions. NOSTRICT_ANSI is the default. As this OPTION affects the 
initial parsing of the Rexx program, it must be specified using the REGINA_OPTIONS 
environment variable or the '-o' command line switch.

[STRICT_WHITE_SPACE_COMPARISONS]
This OPTION specifies if ANSI rules for non-strict comparisons are applied.  Under ANSI, 
when doing non-strict comparisons, only the space character is stripped from the two 
comparators. Under Regina's default behavior, all whitespace characters are stripped. 
NOSTRICT_WHITE_SPACE_COMPARISONS is the default.

[TRACE_HTML]
This OPTION generates HTML <PRE> and </PRE> tags around TRACE output, to enable 
tracing from within CGI scripts. The default is NOTRACE_HTML. The following code shows
the necessary header information to enable this feature:
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#!/usr/bin/rexx
OPTIONS STDOUT_FOR_STDERR TRACE_HTML
Parse Version ver
/* following 2 lines MUST be 'sayed' before TRACE turned on 
*/
Say 'Content-type: text/html'
Say
Say ver
Trace i
Say 'With tracing on'
Trace o
Say 'With tracing off'
Return 0

The output from this would look like:

Note: OPEN_BIF, FIND_BIF, CLOSE_BIF and FILEIO OPTIONs have been removed in 
Regina 3.1

 6.7 Meta-extensions
[ANSI]

Combination of STRICT_ANSI and STRICT_WHITE_SPACE_COMPARISONS .
[BUFFERS]

Combination of BUFTYPE_BIF, DESBUF_BIF, DROPBUF_BIF and MAKEBUF_BIF.
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 6.8 Semi-standards
[CMS]

A set of extensions that stems from the VM/CMS operating system. Basically, this includes 
the most common extensions in the VM/CMS version of Rexx, in addition of some 
functions that perform tasks normally done with commands under VM/CMS.

[VMS]
A set of interface functions to the VMS operating system.  Basically, this makes the Rexx 
programming under VMS as powerful as programming directly in DCL.

[UNIX]
A set of interface functionality to the Unix operating system.  Basically, this includes some 
functions that are normally called as commands when programming Unix shell scripts. 
Although it is possible to call these as commands in Regina, there are considerable speed 
improvements in implementing them as built-in functions.

 6.9 Standards
The following table shows which options are available in different  Rexx Language Levels, and 
the default settings applicable for Regina.

[ANSI]
Rexx Language level 5.0, as described in [ANSI].

[REGINA]
Rexx Language level 5.0, plus extensions, as implemented by Regina 3.1 and above.

[SAA]
Rexx Language level ??, as defined by IBM's System Application Architecture [SAA].

[TRL1]
Rexx Language level 3.50, as described in [TRL1].

[TRL2]
Rexx Language level 4.00, as described in [TRL2].
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Option ANSI REGINA SAA TRL1 TRL2
AREXX_BIFS no yes no no no
AREXX_SEMANTICS no no no no no
BUFTYPE_BIF no yes no no no  
CACHEEXT no no no no no  
CALLS_AS_FUNCS no yes no no no
DESBUF_BIF no yes no no no  
DROPBUF_BIF no yes no no no  
EXT_COMMANDS_AS_FUNCS no yes no no no
FAST_LINES_BIF_DEFAULT yes yes no no no
FLUSHSTACK no no no no no  
HALT_ON_EXT_CALL_FAIL no yes no no no
INTERNAL_QUEUES no no no no no
LINEOUTTRUNC no yes no no no  
MAKEBUF_BIF no yes no no no  
PRUNE_TRACE no yes no no no  
QUEUES_301 no yes no no no
REGINA_BIFS no yes no no no
SINGLE_LINE_COMMENTS no yes no no no
STDOUT_FOR_STDERR no no no no no
STRICT_ANSI yes no no no no
STRICT_WHITE_SPACE_COMPARISONS yes no no no no
TRACE_HTML no no no no no
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 7 The Stack
In this chapter, the stack and operations manipulating the stack are discussed. Since the stack is 
external to the Rexx language, there are large differences between implementations with respect to 
the stack. These differences are attempted described in the latter part of this chapter.

Another goal of this chapter is to try to describe both the "real" standards and some of the most 
commonly used de facto standards related to stack operation. Where something is not a part of any 
defined standard, this is clearly labelled. Also, some liberties have been taken in order to create a 
coherent vocabulary on a field where very little standardization has taken place.

 7.1 Background and history
In the various definitions of Rexx, there are numerous references to the "stack" (often called the 
"external data queue", or just the "queue"). It is a structure capable of storing information, but it is 
not a part of the Rexx language itself.  Rather, it is a part of the external environment supporting a 
Rexx implementation.

Originally, the references to the stack was introduced into Rexx because of the strong binding 
between Rexx and IBM mainframes in the early history of Rexx [BMARKS]. Most (all?) of the 
operating systems for these machines support a stack, and many of their script programming idioms 
involve the stack. Therefore, it was quite natural to introduce an interface to the stack into Rexx, 
and consequently today many of the programming paradigms of Rexx involve a stack.

Unfortunately, this introduced an element of incompatibility into Rexx, as the stack is not in 
general supported for other operating systems. Consequently, Rexx implementers often must 
implement a stack as well of the core Rexx interpreter. Since no authoritative definition of the stack
exists, considerable differences between various implementations.  Ironically, although the stack 
was introduced to help communication between separate programs, the interpreter-specific 
implementations of stacks may actually be a hindrance against compatibility between different 
interpreters.

The stack may have "seemed like a good idea at the time", but in hindsight, it was probably a bad 
move, since it made Rexx more dependent on the host operating system and its interfaces.

 7.2 General functionality of the stack
This section describes the functionality generally available in implementations of stacks. The basic 
functionality described here will be complemented with information on specific implementations 
later.  Unless explicitly labelled otherwise, this functionality is available in all standards treated in 
this documentation.

 7.2.1 Basic functionality

Below is listed the general functionality of the stack, in order of decreasing compatibility. I.e. the 
functionality listed first is more likely to be a part of all implementations than the ones listed at the 
end of the list.
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 The stack is a data structure, which strings can either be inserted into or extracted from. The 
strings in the stack are stored in a linear order. Extraction and insertion works at a granularity of 
a complete string, i.e. it is not possible to insert or extract parts of string.

 The stack has two ends: a top and a bottom.  New strings can be inserted into the stack in both 
ends, but strings can only be extracted from the top of the stack.

 There exists a way of counting the number of strings currently stored in the stack.

A stack is often compared with the pile of plates you often find in cantinas. It allows you to either 
add new plates at the top of the pile or take old plates from the top. When a plate is taken from the 
pile, it will be the most recently plate (that is still present) added to the pile. Stack operating in 
Rexx works the same way, although it also allows "plates" to be added to the bottom of the pile.

 There might be an implementation-specific limit on the length and number of strings stored in 
the stack. Ideally, the maximum length will be fairly large, at least 2**16, although some 
implementations are likely to enforce shorter limits.  Similarly, there might be a limit on the 
number of strings that can be simultaneously stored in the stack. Ideally, there should be no such
limit.

 It is natural that there are limits imposed on the amount of memory occupied by the strings in 
the stack. Some implementations are likely to reserve a fixed (but perhaps configurable) amount
of memory for this purpose while others can dynamically re-size the stack as long as enough 
memory is available.

 Some implementations might restrict the set of characters allowed in strings in the stack, 
although ideally, all characters should be allowed, even characters normally used for end-of-line
or end-of-string.

This documentation use the term "string", while "line" is in common use elsewhere. The term is 
used because the strings in the stack are not inherently interpreted as lines (having an implied end-
of-line), only as a string.

Note that the stack itself is not a part of Rexx, only the parts which interface to the stack.

Example: Using the stack to transfer parameters

This is a common Rexx idiom used in several situations for special parameter passing. The 
following code illustrates its use:
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do i=1 to 10              /* for each parameter string       
*/

queue string.1         /* put the string on the stack   */
end
call subrout 10           /* call the subroutine             
*/
exit

subrout: procedure        /* the definition of the subroutine
*/

do j=1 to arg(1)       /* for each parameter passed */
parse pull line.j   /* retrieve the parameter */

end
...                    /*do something with the 

parameters*/
return

In this example, ten parameter strings are transferred to the subroutine SUBROUT. The parameters 
are stored in the stack, and only the number of parameters are transferred as a "real" argument.

There are several advantages: first, one avoids problems related to exposing variable names. Since 
the data is stored on the stack, there is no need to refer to the variable names and bind the variables 
in the subroutine to variables in the caller routine. In [TRL1], indirect references to variables in 
PROCEDURE EXPOSE is illegal, and this method circumvent the problem.

Two other ways around this problem is to use INTERPRET for the PROCEDURE EXPOSE 
instruction in order to dynamically determine which variables to expose; or to use the VALUE() 
built-in function (with its two first parameters).  The former is incompatible with TRL2, while the 
latter is incompatible with TRL1.  Using the stack can solve the problem in a fashion compatible 
with both standards.  Anyway, if the called routine is an external routine, then exposing does not 
work, so using the stack to transfer values may be the only solution.

Another advantage of this idiom; TRL only requires implementations to support 10 parameters for 
subroutines. Although there are no reasons why an implementation should set a limit for the number
of parameters a routine can get, you should use another mechanism than arguments when the 
number of strings is greater than 10. Using the stack fixes this.

 7.2.2 LIFO and FIFO stack operations

As already mentioned, the stack is a linear list of strings.  Obviously, this list has two ends. Strings 
can only be extracted from one end, while strings can be added to both ends.

If a set of new strings are added to the same end as they are later extracted from, the strings will be 
extracted in the reversed order with respect to the order in which they were added. This is called 
stacking "LIFO", which means "last-in-first-out", meaning that the last string stacked, will be the 
first string extracted, i.e. reversal of the order.

Similarly, when a set of strings are stacked in the end opposite to the end which they are later 
extracted from, they will be extracted in the same order in which they were stacked. This is referred 
to as "FIFO" stacking, meaning "first-in-first-out".
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The FIFO method of stacking is also sometimes referred to as "queueing", while the LIFO method 
is sometimes referred to as "stacking" or "pushing".

 7.2.3 Using multiple buffers in the stack

The concept of buffers and everything directly related to buffers lay without the domain of standard 
Rexx. Thus, this section describes a de facto standard.

Note that Regina supports multiple buffers only in internal stacks.

Some implementations support "buffers", which are a means of focusing on a part of the stack. 
When creating a new buffer, the old contents of the stack is somewhat insulated from the effects of 
stack operations. When the buffer is removed, the state of the old buffer i restored, to some extent: 
Whenever a string is read from the stack, and the topmost buffer on the stack is empty, then that 
buffer will be destroyed. Consequently, if this situation has arisen, dropping buffers will not restore 
the state of the stack before the buffer was created.

The functionality of buffers, and their effect on other stack operations may differ considerably 
between implementations.

Whenever a queuing operations is performed (e.g. by the QUEUE instruction), then the new string is
inserted into the bottom of the topmost buffer, not the bottom of the stack. This is the same if the 
stack has no buffers, but else, the outcome of the queuing operation can be very different.

With IBM mainframe operating systems like CMS, buffers can be inserted on the top of the stack. 
To perform buffer operations, operating system commands are used. It may be instructional to list 
the buffer operations of CMS:

[DESBUF]
Removes all strings and buffers from the stack, and leaves the stack clean and empty. It is 
often used instead of repeated calls to DROPBUF. It always returns the value zero.

[DROPBUF]
Removes zero or more buffers from the stack. It takes one parameter which can be omitted, 
and which must be an integer position if specified, and is the assigned number of the 
bottom-most buffer to be removed, i.e. that buffer and all buffers above it (and of course, all 
the strings in these buffers) are to be removed. If the parameter is not specified, only the 
topmost buffer is removed.  The return valued is always zero, unless an error occurred.

[MAKEBUF]
Makes a new buffer on the stack, starting at the current top of the stack. The return code (as 
stored in the special variable RC) is the number of buffers currently on the stack after the 
new buffer has been added.  Obviously, this will be a positive integer.  This program takes 
no parameters.

One might regard a buffer as a sort of bookmark, which is inserted into the stack, so that a 
subsequent DROPBUF command can remove the stack down to a particular such bookmark.

When such a mark is located on the top of the stack, and a PULL instruction is executed, the buffer 
mark is implicitly destroyed when the PULL instruction reads the string below the buffer mark.  
This is to say that a buffer can be destroyed by either a DESBUF command, a DROPBUF command, 
or a read from the stack (by either the PULL or PARSE PULL instructions).
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 7.2.4 The zeroth buffer

Normally, data pushed on the stack is added to the top of the stack.  When a stack contains only one 
buffer, the strings in that buffer are the strings stored above that buffer-mark. The strings below it 
are not part of the first buffer; instead, they are said to belong to the zeroth buffer.

Thus, all strings from the bottom of the stack, up till the first buffer mark (or the top of the stack if 
no buffers exist) is said to be the strings in the zeroth buffer. However, note that the zeroth buffer is 
only defined implicitly. Thus, it can not really be removed by calling DROP; only the strings in the 
zeroth buffer are removed. Afterwards, the zeroth buffer will still contain all strings at the bottom of
the stack, up till the first buffer mark (if existing).

Example: Process all strings in the stack

This is a common Rexx idiom, where a loop iterates over all the strings currently in the stack, but 
otherwise leave the stack untouched. Supposing the routine PROCESS() exists, and do to 
processing with its parameter and return the processed string:

do i=1 to 5                /* just to fill the stack      */
push 'line #' i

end

do queued()                /* foreach line in the stack   */
parse pull line         /* fetch the line              */
queue process(line)     /* put back the processed line */

end

Here, it is important to use QUEUE to put the strings back into the stack, not PUSH, else the loop 
will iterate the correct number of times, but only operate on the same data string. It is also important
that the stack does not contain any buffers. Since QUEUE will insert into the bottom of the topmost 
buffer, the loop would iterate the correct number of times, but only on a part of the stack. Thus, the 
topmost part of the strings in the stack would be processed multiple times.

Example: How to empty the stack

The following short example shows how you can most easily empty the stack:

do i=1 to 5               /* Just to fill the stack */
push 'line #' i

end

do queued()               /* For each line in the stack */
pull                   /* Remove the line from the stack 

*/
end

This is trivially simple, but there are several interesting and subtle notes to make about this 
example. First, if the number of strings in the stack is likely to change, due to some external 
process, then the DO clause should perhaps better be written as:
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do i=1 to 5               /* Just to file the stack */
push 'line #' i

end

do while queued()>0       /* While the stack is not empty */
pull                   /* Remove a line from the stack */

end

This will in general mean more work for the interpreter, as it is now required to check the number of
strings in the stack for each iteration, while for the previous code fragment, the number of strings is 
only checked once. Another point is that this might not remove all buffers from the stack. Suppose 
the zeroth buffer is empty, i.e. there exists an buffer which was put on the stack when the stack was 
empty.  This buffer is removed in any of the following situations: calling DESBUF, calling 
DROPBUF (sometimes), or reading a string below the buffer mark. Since there are no strings below 
the buffer mark, pulling a string from the stack would make the interpreter read from the keyboard, 
and hang the interpreter.

Thus, the only "safe" way to remove the string and buffers from the stack, without side effects, is to 
call DESBUF or DROPBUF.  On the other hand, if you only want to make sure that there are no 
strings in the buffer, the method described here is more suitable, since it is far more compatible 
(although possibly not so efficient).  But anyway, buffers are not a compatible construct, so it does 
not matter so much.

 7.2.5 Creating new stacks

The description of multiple stack operations in this section, is not part of standard Rexx, nor is it 
implemented in Regina. Thus, this section describes a de facto standard and you may find that 
few implementations support these operations.

Just as the operations described above let the Rexx programmer use multiple buffers within one 
stack, there exists another set of operations which let the programmer create multiple stacks. There 
is really nothing fancy about this, except that a command will swap the stack the interpreter 
correctly uses with another stack.

To the interpreter this is really equivalent to a situation where a command empties the current stack,
and sets up a new stack. When one stack is empty, and the Rexx program tries to read from the 
stack, the request will not "overflow" to the previous stack (as requests to an empty buffer 
"overflows" to the previous buffer). Thus, the use of multiple stacks has even less direct impact on 
Rexx interpreters than multiple buffers.

Here, it is instructive to list the commands operating multiple stacks that exists. This list has been 
taken from the MVS environment, according to [REXXSAA].

[DELSTACK]
Is used to remove the most currently stack, and make the most recent of the saved stacks the 
current stack. When there are no saved stacks, the current stack is emptied.

[NEWSTACK]
Creates a new stack, which becomes the current stack. The old current stack is put on the top
of the list of saved stacks, and can be retrieved as the current stack by a subsequent 
DELSTACK.
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[QBUF]
Counts the number of buffers in the current stack, and returns that number as the return 
value. A Rexx program starting this command can retrieve this value as the special variable 
RC.

[QELEM]
Counts the number of strings (i.e. elements) in the current stack, and returns that value as the
return value of the command. This value can be retrieved in Rexx as the special variable RC.
This operation is equivalent to the QUEUED() built-in function in Rexx; it has been 
probably included for the benefit of other script languages that have less functionality than 
Rexx.

[QSTACK]
Counts the number of stacks (including the current stack) and returns the value as the return 
value from the command. This number can be retrieved in Rexx as the special variable RC.

One can regard multiple buffers and stacks as two ways of insulating the stack; where multiple 
stacks are a deeper and more insulating method than buffers. Note that each stack can contain 
multiple buffers, while a buffer can not contain any stacks. The term "hard buffers" has been used 
about multiple stacks, as opposed to normal buffers, which are sometimes called "soft buffers".

Also note that neither multiple stacks nor buffers are part of standard Rexx, so you might come 
across implementations that support only multiple stacks, only buffers, or even none of them.

Example: Counting the number of buffers

In order to count the number of buffers on the stack, the following method can be used (Regina 
syntax has been used for buffer handling). This method is equivalent to the QBUF command 
described above.

buffers = makebuf() - 1
call dropbuf

This will store the number of buffers in the stack in the variable buffers. However, just as for the
other examples using buffers, this example also suffers from the fact that buffer handling is fairly 
non-standard. Thus, you will have to adapt the code to whatever system you want to use.

 7.3 The interface between Rexx and the stack
As defined in TRL, the interface to the stack consists of the PARSE PULL, PULL, PUSH, and 
QUEUE instructions; and the QUEUED() built-in function.

There exists a binary interface to the stack in SAA, see the chapter on the SAA API interface. This 
interface consists of the RXMSQ exit handler  and the QUENAME value of the RXSHV_PRIV request
of the RexxVariablePool() function of the variable pool interface.

 7.4 Strategies for implementing stacks
As mentioned, stacks are rarely a part of the operating system.  Therefore, under most operating 
systems, Rexx interpreters have to implement their own stacks. There are several strategies for 
doing this, some which are listed below.
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[In the operating system.]
This is of course "the right way" to do it. However, it requires that the definition of the 
operating system is such that stacks are supported. Currently, only IBM mainframe-based 
systems support stack, together with a few other systems that have included stacks as a 
consequence of making Rexx a main scripting language (Amiga and OS/2 come to mind).

[As a device driver.]
This is really just a variation of making the stack a part of the operating system. However, in
some systems, drivers can be added very easily to the system. Drivers are often filesystem-
based, in which case driver-based stack operations must operate on a file or pseudo-file. But 
for some systems, adding a driver requires much more profound changes, reconfiguration, 
and often system privileges. In all cases, drivers are likely to be very system specific.

[As a daemon.]
A "daemon" is background process that does some housekeeping service, e.g. handling mail 
from remote systems. Implementing a stack as a daemon is only slightly simpler than using 
a driver, but the main idea is the same for both approaches.

[In the interpreter.]
Using this approach, the stack is built into the interpreter as a sort of extension. This is often 
the simplest way, since it require very little coordination with other programs during run-
time.  The main problem is that the stack becomes private to the interpreter, so two 
interpreters can not use the same stack; not even if they are two invocations of the same 
interpreter.

These items are listed in the order of how closely they are coupled to the operating system: the first 
items are very closely, while the last items are loosely coupled. The more closely coupled the 
implementation of a stack is coupled to the operating system, the better is the chance that several 
interpreters on the same system can communicate in a compatible way, using the stack.

There is room for several hybrid solutions, based on the four fundamental approaches. For instance, 
a built-in stack can also act as a daemon.

Regina supports the stack as both a daemon and internal to the interpreter.

Example: Commands takes input from the stack

In the example above, the routine that is called takes its arguments from the stack.  Similarly, 
commands to an external environment can get their arguments in the same way. Here is an example 
of how to do it:

queue 'anonymous'               /* the username */
queue 'user@node'               /* the password */
queue 'dir'                     /* first command */
queue 'exit'                    /* second command */
address command 'FTP flipper.pvv.unit.no'

Although this is very convenient in some situations, there is also considerable disadvantages with 
this method: There is no real interactive communication between the interpreter and the command; 
i.e. all input meant for the command must be set up before the command itself is invoked. 
Consequently, if one of the input lines to the command provokes an error, there is very little error 
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handling facility. Commonly, such an error might start a cascade of errors, as the remaining input 
lines are likely to be invalid, or even be interpreted in a context different from what they were 
intended.

As with all commands involving the stack, it is important to push or queue the correct order.

Using this technique, a program can "fool" a command to do almost anything, by storing the correct
input on the stack. However, there is a big disadvantage: Since the stack is implementation-
dependent, it is not certain that a command will take its input from the stack. For some systems, this
is the default, while for other systems, this is only possible through some explicit action. Some 
systems might not even allow commands to take their input from the stack at all.

Example: "Execing" commands

Many script programming languages can only execute commands while still running, or at most 
start a new command immediately after the termination (like the exec() system call in Unix).  
However, the stack can be used on some systems to set up the system to execute one or more 
commands after the current script terminates. Here is an example:

push 'ls'         /* finally execute 'ls' */
push 'who'        /* then execute 'who'   */
push 'pwd'        /* first execute 'pwd'  */
exit 0

Supposing that the system reads its commands from the stack if the stack is not empty, then this 
script will terminate after having set up the stack so that the three commands pwd, who and ls will
be run in that sequence. Note the order, if QUEUE had been used, the order would be the opposite, 
which is perhaps more intuitive (assuming the topmost buffer is empty).

As with the example above, this too is only relevant for some systems, thus is not very compatible, 
and you should be careful when using it. It also suffers from the lack of interactivity, error handling,
and the importance of the order in which the strings are pushed or queued. For all practical reasons, 
this is just a special case.

Using the stack to "leave behind" command names and input only works for systems where 
command interpreters and commands reads their input from the stack. This is in general true for 
IBM mainframe systems, but very few other systems.

 7.5 Implementations of the stack in Regina
In Regina, the stack is implemented as both an integral, private part of the interpreter and as a 
cross-platform external stack able to be used by multiple clients on multiple machines. Internal 
stacks provide the obvious advantage of speed at the expense of data sharing. External stacks are 
considerably slower, but do enable data sharing between instances of Regina and/or other programs.

Regina supports the standard TRL (and ANSI) Rexx stack interface functionality, like PARSE 
PULL, PULL, QUEUE, PUSH, the QUEUED() built-in function, and in future versions, support the 
SAA API stack interface. These commands and functions operate on both the internal and external 
stacks.
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 7.5.1 Implementation of the internal stack in Regina 2.2 and above

Whenever the Rexx programmer wants to execute a command and let that command either flush 
the output to the internal stack, or read its input from the internal stack, this has to be arranged by 
the interpreter itself.  In Regina this is normally done by pre pending or appending certain terms to 
the command to be executed.

Consider the following command clauses for Regina:

'ls >LIFO'
'who >FIFO'
'LIFO> wc'
'LIFO> sort >FIFO'

For all these commands, the "piping" terms are stripped off the command string before the 
command is sent to the command interpreter of the operating system. Thus, the command 
interpreter only sees the commands ls, who, wc, and sort. The terms stripped off, are used as 
indicators of how the input and output is to be coupled with the stack. The use of input/output 
redirection as above is only available with the internal stack.

Note that it is important not to confuse the redirection of output to the stack and input from the 
stack in Regina with the redirection of the Unix shells. The two can be mixed in command lines, 
but are still two different concepts.

The first command will execute the ls command, and redirect the output from it to the stack in a 
LIFO fashion. The second executes the command who and redirects the output to the stack to, but 
in a FIFO fashion. The third command executes the wc, but lets the standard input of that command
come from the stack.  Actually, it is irrelevant whether FIFO> or LIFO> is used for input; the 
strings are read from the top of the stack in both cases.  The fourth command is a plain ps 
command without any redirection to or from the stack. The last command executes the sort 
program and lets it read its input from the stack, and redirect the output to the stack.

Regina allows a command to take both an input and an output "redirection" to a stack, as showed in
the last example above.  However, it also guarantees that the output is not available in the stack 
before the command has terminated. The output from the command is stored in a temporary stack, 
and flushed to the ordinary stack after the command is terminated. Thus, the command will not start
to read its own output.

Note that this temporary buffering of command output is the default behavior, which might be set 
up to something different at your site.

In addition, you can change it through the OPTIONS instruction, by using either FLUSHSTACK or 
BUFFERSTACK as "parameters".

Note the difference between Regina's redirection and Unix redirection. In Regina, only the term 
LIFO>  (when first in the command string), and the terms >LIFO and >FIFO (when last in the 
command string), will be interpreted as redirection directives. These terms will be stripped off the 
command string.  All other redirection directives will be left untouched. If you should happen to 
need to redirect output from a Unix command to the file FIFO or LIFO, then you can append a 
space at the end or specify the file as ./FIFO of ./LIFO. That will make Regina ignore the 
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redirection term.

Note that this particular form of redirection of command input and output will most probably 
disappear in future versions of Regina, where it will probably be replaced by an extended 
ADDRESS instruction.

In addition to the ANSI standard, there are a few extra built-in functions, which are supposed to 
provide compatibility with other Rexx implementations, principally CMS Rexx. These are 
BUFTYPE, DESBUF, DROPBUF and MAKEBUF.  See the descriptions of these function in the 
built-in functions section above. 

 7.5.2 Implementation of the external stack in Regina 2.2 and above

The implementation of the external stack follows the model used by OS/2 Rexx, but is 
implemented as an operating system daemon.  This daemon is rxstack.

rxstack
Under most operating systems, rxstack is started from the operating system's startup process and 
terminates when the machine is shutdown. Under Windows 2000 and above, it runs as a Service.

Communication between rxstack and Regina is done via TCP/IP sockets.  Using sockets as the 
IPC mechanism on a local machine is somewhat slow compared to other mechanisms such as 
shared memory or named pipes. It does however enable operation between machines on different 
operating systems to function seamlessly.

The full syntax of the rxstack command is:

rxstack [switch]

switch is one of the following:
-h, --help display help message
-D, --debug show debugging information
-d, --daemon run rxstack as a daemon - Unix only
-k, --kill kills (stops) rxstack - subject to being a valid killer - see Security of 

External Queues
-p, --port the TCP port on which rxstack runs

Breakage Alert!! - Start
-w, --world allow access to rxstack from anywhere. Since v3.8, rxstack by 

default only allows access from localhost

Breakage Alert!! - End
the following switches are applicable to Windows 2000 and above

-install installs the NT Service; Rexx Stack - Windows 2000 and above only
-start starts the NT Service; Rexx Stack - Windows 2000 and above only
-stop stops the NT Service; Rexx Stack - Windows 2000 and above only
-remove stops and removes the NT Service; Rexx -Stack - Windows 2000 and 

above only
-d runs rxstack in a command prompt which then allows non-service 

related switches - Windows 2000 and above only
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To stop rxstack, the process can be killed with a SIGINT or SIGTERM or by running rxstack with 
the -k or --kill switch.

rxqueue
To allow non-Rexx program to interface to the rxstack daemon, a companion program; rxqueue, 
is provided. rxqueue communicates with non-Rexx programs via its stdin and stdout.

Consider the following equivalents for Regina's internal and external stack

'ls >LIFO' 'ls | rxqueue /lifo'
'who >FIFO' 'who | rxqueue /fifo'
'LIFO> wc' rxqueue /pull | wc'
'LIFO> sort >FIFO' rxqueue /pull | sort | rxqueue /fifo'

The full syntax of the rxqueue command is:

rxqueue [switch] [queue] [action]

switch is a Regina extension and is one of the following:
-h, --help display help message
-D, --debug show debugging information
-t, --text “string” queue the supplied string rather than from stdin. Only valid for /fifo or

/lifo actions
queue is a Regina external queue name – see Queue Names for structure. If no queue is 

specified, rxqueue uses the queue name; SESSION
action is one of the following – as per OS/2 Rexx

/fifo queue lines from stdin LIFO onto the queue
/lifo queue lines from stdin FIFO onto the queue
/clear remove all lines from the queue

the following switches are Regina extensions
/delete delete the specified queue
/queued return the number of lines on the queue
/pull pull all lines from the queue and display on stdout
/list displays list of queues held by rxstack

rxqueue Built-in Function
Rexx programs communicate with rxstack via the normal queueing mechanisms of QUEUE, 
PUSH, PULL and QUEUED(). These commands operate on the current queue and have no 
mechanism for changing the queue to use. This is whereRXQUEUE() is used.  Its primary purpose 
is to control the queue that the remainder of the Rexx program operates on.

Queue Names
To enable the use of the Rexx stack as a cross-platform, multi-machine IPC, the naming 
conventions adopted by OS/2 Rexx has been modified. As OS/2 Rexx queues are local to a single 
machine, queue names have no structure.  To enable identification of queues on different machines, 
some structure must be built into external queue names on Regina. An external queue name on 
Regina has the following format:

[queue][@machine[:port]]
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The components of the queue name are: 
queue the name of the queue. The only criteria for the name is that it contains none of the 

following characters: @, . or :. The queue component can be blank, when specifying 
the default queue on a specified machine.

machine the machine that hosts the specified queue. This can either be a standard IPv4 IP 
address or a machine name that can be resolved to a standard IPv4 IP address. The 
machine name is optional, and defaults to 127.0.0.1

port The port number that rxstack on machine is listening to. The default port number for
rxstack is 5757.

When referring to queues on the local machine, the machine and port components need not be 
specified. The behaviour of the external stack is then the same as for OS/2 Rexx, with the exception
that the queues on the local machine can still be manipulated by Regina on another machine.

Some examples may make this clearer. TBD

Security of External Queues

(Not implemented yet)
A daemon process like rxstack, waiting on a TCP/IP socket for anyone to connect to and use is 
open to abuse.  To reduce the openness  of rxstack, it uses a security mechanism much like the 
Unix hosts.allow and hosts.deny files is used to control access to rxstack. 
Environment Variables

RXQUEUE
RXSTACK

202



 8 Interfacing Rexx to other programs
This chapter describes an interface between a Rexx interpreter and another program, typically 
written in C or another high level, compiled language. It is intended for application programmers 
who are implementing Rexx support in their programs. It describes the interface known as the 
Rexx SAA API.

 8.1 Overview of functions in SAA
The functionality of the interface is divided into some main areas:

 Subcommand handlers
which trap and handle a command to an  external environment.

 External function handlers
extend the Rexx language with external functions

 Interpreting
Rexx scripts, either from a disk  file, or from memory.

 Variable interface
which makes it possible to access the variables in the interpreter, and allows operations like 
setting, fetching and dropping variables.

 System exits
which are used to hook into certain key points in the interpreter while it executes a script.

 External Queue interface
which allows access to Regina's external queuing mechanism.

 Macrospace functions
which are used to load and save external macros into Regina's macrospace for faster 
execution. These are not implemented in Regina yet.

 Memory Allocation functions
which provide for platform-independent memory allocating/deallocation functions.

 Callback functions
which are used to allow the API program to execute a procedure within the running script.

In the following sections each of these areas are described in detail, and a number of brief but 
complete examples are given at the end of the chapter.

The description is of a highly technical nature, since it is assumed that the reader will be an 
application programmer seeking information about the interface. Therefore, much of the content is 
given as prototypes and C style datatype definitions. Although this format is cryptic for non-C 
programmers, it will convey exact, compact, and complete information to the intended readers. 
Also, the problems with
ambiguity and incompleteness that often accompany a descriptive prose text are avoided.

 8.1.1 Include Files and Libraries

All the C code that uses the Rexx application interface, must include a special header file that 
contains the necessary definitions. This file is called rexxsaa.h. Where you will find this file,
will depend on you system and which compiler you use. 
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Also, the interface part between the application and the Rexx interpreter may be implemented as a 
library, which you link with the application using the functions described in this chapter. The name 
of this library, and its location might differ from system to system. Under Unix, this library is 
implemented as a static (libregina.a) or dynamic library (libregina.[so|sl]). Under other platforms 
the Regina library is also implemented  as a static or dynamic library.

 8.1.2 Preprocessor Symbols

Including a header file ought to be enough; unfortunately, that is not so. Each of the domains of 
functionality listed above are defined in separate sections' in the rexxsaa.h header file. In order for
these to be made available, certain preprocessor symbols have to be set. For instance, you have to 
include the following definition:

#define INCL_RXSHV
in order to make available the definitions and datatypes concerning the variable pool interface. The 
various definitions that can be set are: 

 INCL_RXSUBCOM
Must be defined in order to get the prototypes, datatypes and  symbols needed for the 
subcommand interface of the API.

 INCL_RXFUNC
Must be defined in order to get the prototypes, datatypes and  symbols needed for the 
external function interface of the API.

 INCL_RXSYSEXIT
Must be defined in order to get the prototypes, datatypes, and  symbols needed for the 
system exit functions

 INCL_RXSHV
Must be set in order to get the prototypes, symbols and datatype definitions necessary to use 
the Rexx variable pool. 

 INCL_RXQUEUE
Must be set in order to get the prototypes, symbols and datatype definitions necessary to use 
the Rexx external queues.

 INCL_RXMACRO
Must be set in order to get the prototypes, symbols and datatype definitions necessary to use 
the Rexx macrospace interface of the API.  

 8.1.3 Data structures and data types

In this section, some data structures and datatypes relevant to the application interface to Rexx are 
defined and described. The datatypes defined are:

 RXSTRING
Holds a Rexx string.

 RXSYSEXIT
Holds a definition of a system exit handler. Used when starting a  Rexx script with 
RexxStart(), and when defining the system exit handlers. 

The datatypes used in the SAA API are defined in rexxsaa.h. They are:

typedef char CHAR ;
typedef short SHORT ;
typedef long LONG ;
typedef char *PSZ ;
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typedef CHAR *PCHAR ;
typedef SHORT *PSHORT ;
typedef LONG *PLONG ;
typedef unsigned char UCHAR ;
typedef unsigned short USHORT ;
typedef unsigned long ULONG ;
typedef USHORT *PUSHORT ;
typedef char *PCH ;
typedef unsigned char *PUCHAR ;
typedef void VOID;
typedef void *PVOID; 
typedef ULONG APIRET;
typedef APIRET (APIENTRY *PFN)();

One other item needs mentioning; APIENTRY.  This value is used to specify the linkage type on 
OS/2 and Win32 platforms.  It is assumed that this value #defined by inclusion of compiler-specific
header files in rexxsaa.h.  Under Unix, this is #defined to nothing.

 8.1.3.1 The RXSTRING structured
The SAA API interface uses Rexx string which are stored in the structure RXSTRING. There is 
also a datatype PRXSTRING, which is a pointer to RXSTRING. Their definitions are: 

typedef struct {
unsigned char *strptr ;    /* Pointer to string contents */
unsigned long strlength ;  /* Length of string */

} RXSTRING ;

typedef RXSTRING *PRXSTRING ;

The strptr field is a pointer to an array of characters making up the contents of the Rexx string', 
while strlength holds the number of characters in that array. 

Unfortunately, there are some inconsistencies in naming of various special kinds of strings. In Rexx
(TRL), a ``null string'' is a string that has zero length. On the other hand, the SAA API operates with
two kinds of special strings: null strings and zero length strings. The latter is a string with zero 
length (equals null strings in Rexx), while the former is a sort of  undefined or empty string, which 
denotes a string without a value. The null strings of SAA API are used to denote unspecified values 
(e.g. a parameter left out in a subroutine call). In this chapter, when the terms null strings and zero 
length strings are italicized, they refer to the SAA API style meaning.

A number of macros are defined, which simplifies operations on RXSTRINGs for the programmer. 
In the list below, all parameters called x are of type RXSTRING.

 MAKERXSTRING(x,content,length)]
The parameter content must be a pointer to char, while length is integer. The x parameter 
will be set to the contents and length supplied. The only operations are assignments;  no new
space is allocated and the contents of the string is not copied. 

 RXNULLSTRING(x)]
Returns true only if x is a null string.
i.e.  x.strptr is NULL.
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 RXSTRLEN(x)]
Returns the length of the string x as an unsigned long. Zero is returned both when x is a null
string or a zero  length string.

 RXSTRPTR(x)]
Returns a pointer to the first character in the string x, or  NULL if x is a null string. If x is a 
zero length string, and non-NULL pointer is returned.

 RXVALIDSTRING(x)]
Returns true only if x is neither a null string nor a  zero length string 
i.e. x must have non-empty contents.

 RXZEROLENSTRING(x)]
Returns true only if x is a zero length string.
i.e.  x.strptr is non-NULL, and  x.strlength is  zero.

These definitions are most likely to be defined as preprocessor macros, so you should never call  
them with parameters  having any side effects. Also note that at least MAKERXSTRING() is likely
to be implemented as two statements, and might not work properly if following 
e.g. an if statement. Check the actual definitions in the rexxsaa.h header file before using them in a
fancy context. 

One definition of these might be (don't rely on this to be the case with your implementation):

 #define MAKERXSTRING(x,c,l) ((x).strptr=(c),(x).strlength=(l))
 #define RXNULLSTRING(x)     (!(x).strptr)
 #define RXSTRLEN(x)         ((x).strptr ? (x).strlength : 0UL)
 #define RXSTRPTR(x)         ((x).strptr)
 #define RXVALIDSTRING(x)    ((x).strptr && (x).strlength)
 #define RXZEROLENSTRING(x)  ((x).strptr && !(x).strlength)

Note that these definitions of strings differ from the normal definition in C programs; where a string
is an array of characters, and its length is implicitly given by a terminating ASCII NUL character. In
the  RXSTRING definition, a string can contain any character, including an ASCII NUL, and the 
length is explicitly given. 

 8.1.3.2 The RXSYSEXIT structured
This structure is used for defining which system exit handlers are to handle which system exits. The
two relevant datatypes are defined as:

typedef struct {
unsigned char *sysexit_name ;
short sysexit_code ;

} RXSYSEXIT ;

typedef RXSYSEXIT *PRXSYSEXIT ;

In this structure, sysexit_name is a pointer to the ASCII NUL terminated string containing the 
name of a previously registered (and currently active) system exit handler. This registration is done 
by the RexxRegisterExitExe() or RexxRegisterExitDll() functions. The EnvName argument to 
these function calls match sysexit_name. 
The  sysexit_code field is main function code of a system exit.
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The system exits are divided into main functions and sub-functions. An exit is defined to handle a 
main function, and must thus handle all the sub-functions for that main function. All the functions 
and sub-functions are listed in the description of the EXIT structure.

207



 8.2 The Subcommand Handler Interface
This sections describes the subcommand handler interface, which enables the application to trap 
commands in a Rexx script being executed and handle these commands itself. 

 8.2.1 What is a Subcommand Handler

A subcommand handler is a piece of code that is called to handle a command to an external 
environment in Rexx. It must be either a subroutine in the application that started the interpreter, or 
a subroutine in a dynamic link library. In any case, when the interpreter needs to execute a 
command to an external environment, it will call the subcommand handler, passing the command as
a parameter. 
Typically, an application will set up a subcommand handler before starting a Rexx script. That way,
it can trap and handle any command being executed during the course of the script. 

Each subcommand handler handles one environment, which is referred to by a name. It seems to be 
undefined whether upper and lower case letters differ in the environment name, so you should 
assume they differ. Also, there might be an upper limit for the length of an environment name, and 
some letters may be illegal as part of an environment name.

Regina allows any letter in the environment name, except  ASCII NUL; and sets no upper limit for 
the length of an environment name. However, for compatibility reasons, you should avoid 
uncommon letters and keep the length of the name fairly short.

The prototype of a subcommand handler function is:

APIRET APIENTRY handler(
PRXSTRING command,
PUSHORT flags,
PRXSTRING returnstring

) ;

After registration, this function is called whenever the application is to handle a subcommand for a 
given environment. The value of the parameters are:

[command]
The command string that is to be executed. This is the resulting  string after the 
command expression has been evaluated in the Rexx interpreter. It can not be empty,
although it can be a  zero-length-string. 

[flags]
Points to an unsigned short which is to receive  the status of the completion of the 
handler. This can be one of the following:  RXSUBCOM_OK, 
RXSUBCOM_ERROR, or RXSUBCOM_FAILURE. The contents will be used to 
determine whether  to raise any condition at return of the subcommand. Do not 
confuse  it with the return value. 

[returnstring]
Points to a RXSTRING which is to receive the return value from the subcommand. 
Passing the return value as a string makes it  possible to return non-numeric return 
codes. As a special case, you  might set returnstring.strptr to NULL, instead of  
specifying a return string of the ASCII representation of zero.
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Note that it is not possible to return nothing in a subcommand, since this is interpreted as zero. Nor 
is it possible to return a numeric return code as such; you must convert it to ASCII representation 
before you return.

The returnstring string will provide a 256 byte array which the programmer might use if the return 
data is not longer that that. If that space is not sufficient, the handler can provide another area itself. 
In that case, the handler should not de-allocate the default area, and the new area should be 
allocated in a standard fashion. 

 8.2.2 The RexxRegisterSubcomExe() function

This function is used to register a subcommand handler with the interface. The subcommand 
handler must be a procedure located within the code of  the application. After registration, the Rexx
interpreter can execute subcommands by calling the subcommand handler with parameters 
describing the subcommand.

The prototype for RexxRegisterSubcomExe() is:

APIRET APIENTRY RexxRegisterSubcomExe( 
PSZ EnvName,
PFN EntryPoint,
PUCHAR UserArea 

) ;

All the parameters are input, and their significance are:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the 
environment to be registered. This is the same name as the Rexx interpreter uses 
with the  ADDRESS clause in  order to select an external environment. 

[EntryPoint]
Points to the entrypoint of the subcommand handler routine for the environment to 
be registered. See the section on Subcommand  Handlers for more information. 
There is an upper limit for the  length of this name.

[UserArea]
Pointer to an 8 byte area of information that is to be associated  with this 
environment. This pointer can be NULL if no such  area is necessary.

The areas pointed to by  EnvName and  UserArea are copied to a private area in the interface, so 
the programmer may de-allocate or reuse the area used for these parameters after the call has 
returned. 

RexxRegisterSubcomExe() returns an unsigned long, which carries status information 
describing the outcome of the operation. The status will be one of the RXSUBCOM values:

[ RXSUBCOM_OK]
The subcommand handler was successfully registered.

[RXSUBCOM_DUP]
The subcommand handler was successfully registered. There already existed another 
subcommand handler which was registered with RexxRegisterSubcomExe(), but 

209



this will be shadowed by the newly registered handler.
[RXSUBCOM_NOTREG]

Due to some error, the handler was not registered. Probably because a handler for 
EnvName was already defined at a  previous call to RexxRegisterSubcomExe().

[RXSUBCOM_NOEMEM]
The handler was not registered, due to lack of memory. 

[RXSUBCOM_BADTYPE]
Indicates that the handler was not registered, due to one or more of the parameters 
having invalid values. Regina addition.

 8.2.3 The RexxRegisterSubcomDll() function

This function is used to set up a routine that is located in a module in a dynamic link library, as a 
subcommand handler. After registration, the Rexx interpreter can execute subcommands by calling 
the subcommand handler with parameters describing the subcommand.
Some operating systems don't have dynamic linking, and thus cannot make use of this facility. The 
prototype of this function is:

APIRET APIENTRY RexxRegisterSubcomDll(
PSZ EnvName,
PSZ ModuleName,
PFN EntryPoint,
PUCHAR UserArea,
ULONG DropAuth

) ;

All the parameters are input, and their significance are:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the 
environment to be registered. This is the same name as the Rexx interpreter uses 
with the  ADDRESS clause in  order to select an external environment. 

[ModuleName]
Points to an ASCII NUL terminated character string which defines the name of the 
dynamic or shared library in which the EntryPoint to the subcommand exists. 

[EntryPoint]
Points to the entrypoint of the subcommand handler routine for the environment to 
be registered. See the section on Subcommand  Handlers for more information. 
There is an upper limit for the  length of this name.

[UserArea]
Pointer to an 8 byte area of information that is to be associated  with this 
environment. This pointer can be NULL if no such  area is necessary.

[DropAuth]
Is either RXSUBCOM_DROPABLE or RXSUBCOM_NONDROP. This 
argument is ignored by Regina as subcommands only exists within the current 
process. 

The areas pointed to by  EnvName, ModuleName and  UserArea are copied to a private area in 
the interface, so the programmer may de-allocate or reuse the area used for these parameters after 
the call has returned. 
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RexxRegisterSubcomDll() returns an unsigned long, which carries status information describing
the outcome of the operation. The status will be one of the RXSUBCOM values:

[ RXSUBCOM_OK]
The subcommand handler was successfully registered.

[RXSUBCOM_DUP]
The subcommand handler was successfully registered. There already existed another 
subcommand handler which was registered with RexxRegisterSubcomDll(), but 
this will be shadowed by the newly registered handler.

[RXSUBCOM_NOTREG]
Due to some error, the handler was not registered. Probably because a handler for 
EnvName was already defined at a  previous call to RexxRegisterSubcomDll().

[RXSUBCOM_NOEMEM]
The handler was not registered, due to lack of memory. 

[RXSUBCOM_BADTYPE]
Indicates that the handler was not registered, due to one or more of the parameters 
having invalid values. Regina addition.

 8.2.4 The RexxDeregisterSubcom() function

This function is used to remove a particular environment from the list of registered environments. 
The prototype of the function is:

APIRET APIENTRY RexxDeregisterSubcom( 
PSZ EnvName,
PSZ ModuleName 

) ;

Both parameters are input values:

[EnvName]
Pointer to ASCII NUL terminated string, which represents the name of the 
environment to be removed.

[ModuleName]
Also an ASCII NUL terminated string, which points to the name of  the module 
containing the subcommand handler of the environment to be deleted.

The list of defined environments is searched, and if an environment matching the one named by the 
first parameter are found, it is deleted. 

The returned value from RexxDeregisterSubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was successfully deleted.

[RXSUBCOM_NOTREG]
The subcommand handler was not found.  

[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried 
through. Regina addition.

[RXSUBCOM_NOCANDROP]
Unable to deregister the subcommand handler. Regina addition.
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Most systems that do have dynamic linking have no method for reclaiming the space used by 
dynamically linked routines. So, even if you were able to load a dll, there are no guarantees that you
will be able to unload it. 

 8.2.5 The RexxQuerySubcom() function

This function retrieves information about a previously registered subcommand handler. The 
prototype of the function is:

APIRET APIENTRY RexxQuerySubcom(
PSZ EnvName,
PSZ ModuleName,
PUSHORT Flag,
PUCHAR UserArea 

) ;

The significance of the parameters are:

[EnvName]
Pointer to an ASCII NUL terminated character string, which names the subcommand
handler about which information is to be returned. 

[ModuleName]
Pointer to an ASCII NUL terminated character string, which names a dynamic link 
library. Only the named library will be searched for the subcommand handler named 
by  EnvName. This parameter must be NULL if all subcommand handlers are to be 
searched. 

[Flag] 
Pointer to a short which is to receive the value RXSUBCOM_OK or 
RXSUBCOM_NOTREG. In fact, this is the same as the return value from the 
function. 

[UserArea]
Pointer to an area of 8 bytes. The userarea of the subcommand  handler is copied to 
the area pointed to by UserArea. This parameter might be NULL if the data of the 
userarea is  not needed. 

The returned value from RexxQuerySubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was found, and the required information has  been 
returned in the Flag and  UserAreavariables. 

[RXSUBCOM_NOTREG]
The subcommand handler was not found. The Flag variable will also be set to this 
value, and the UserArea variable is not changed. 

[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried 
through. Regina addition.
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 8.3 The External Function Handler Interface
This sections describes the external function handler interface, which extends the language by 
enabling external functions to be written in a language other than Rexx.

 8.3.1 What is an External Function Handler

An external function handler is a piece of code, that is called to handle external functions and 
subroutine calls in Rexx. It must be either a subroutine in the application that started the interpreter,
or a subroutine in a dynamic link library. In any case, when the interpreter needs to execute a 
function  registered as an external function, it will call the external function handler, passing the 
function name as a parameter. 
All external functions written in a language other than Rexx must be registered with the interpreter 
before starting a Rexx script. 

An external function handler can handle one or more functions.  The handler can determine the 
function actually called by examining one of the parameters passed to the handler and act 
accordingly.

The prototype of an external function is:

APIRET APIENTRY handler(
PSZ name,
ULONG argc,
PRXSTRING argv,
PSZ queuename,
PRXSTRING returnstring

) ;

After a function is registered with this function defined as the handler, this function is called 
whenever the application calls the function. The value of the parameters are:

[name]
The  function called.

[argc]
The number of parameters passed to the function. 

[argv]
Argv will contain argc RXSTRINGs.

[queuename]
The name of the currently define data queue.

[returnstring]
Points to a RXSTRING which is to receive the return value from the function. 
Passing the return value as a string makes it  possible to return non-numeric return 
codes. As a special case, you  might set returnstring.strptr to NULL, instead of  
specifying a return string of the ASCII representation of zero.

The returnstring string will provide a 256 byte array which the programmer might use if the return 
data is not longer that that. If that space is not sufficient, the handler can provide another area itself. 
In that case, the handler should not de-allocate the default area, and the new area should be 
allocated in a standard fashion.  if the external function does not return a value, it should set 
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returnstring to an empty RXSTRING.  This will enable the interpreter to raise error 44; Function 
did not return data, if the external function is called as a function.  If the external function is 
invoked via a CALL command, the interpreter drops the special variable RESULT.

The handler returns zero if the function completed successfully.  When the handler returns a non-
zero value, the interpreter will raise error 40; Invalid call to routine.  

 8.3.2 The RexxRegisterFunctionExe() function

This function is used to register an external function handler with the interface. The external 
function handler must be a procedure located within the code of  the application. After registration, 
the Rexx interpreter can execute external functions as if they were built-ins.

The prototype for RexxRegisterFunctionExe() is:

APIRET APIENTRY RexxRegisterFunctionExe( 
PSZ FuncName,
PFN EntryPoint

) ;

All the parameters are input, and their significance are:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the 
external function to be registered. This is the same name as the Rexx interpreter uses
with a function call or via  the CALL command.

[EntryPoint]
Points to the entrypoint of the external function handler routine for the function to be
registered. See the section on External Function  Handlers for more information. 

The area pointed to by  FuncName is copied to a private area in the interface, so the programmer 
may de-allocate or reuse the area used for this parameter after the call has returned. 

The RexxRegisterFunctionExe() returns an unsigned long, which carries status information 
describing the outcome of the operation. The status will be one of the RXFUNC values:

[ RXFUNC_OK]
The handler was successfully registered.

[RXFUNC_DEFINED]
The  handler was successfully registered. There already existed another external 
function handler which was registered with RexxRegisterFunctionExe(), but this 
will be shadowed by the newly registered handler.

[RXFUNC_ENTNOTFND]
The handler was not registered as the EntryPoint was not found.

[RXFUNC_NOMEM]
The handler was not registered, due to lack of memory. 

 8.3.3 The RexxRegisterFunctionDll() function

This function is used to set up an external function handler that is located in a module in a dynamic 
link library. Some operating systems don't have dynamic linking, and thus cannot make use of this 
facility. The prototype of this function is:
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APIRET APIENTRY RexxRegisterFunctionDll(
PSZ ExternalName,
PSZ LibraryName,
PSZ InternalName

) ;

All the parameters are input, and their significance are:

[ExternalName]
Points to an ASCII NUL terminated character string which defines the name of the 
external function to be registered. This is the same name as the Rexx interpreter uses
with a function call or via  the CALL command.

[LibraryName]
Points to an ASCII NUL terminated character string which defines the name of the 
dynamic library.  This string may require a directory specification.

[InternalName]
Points to an ASCII NUL terminated character string which defines the name of the 
entrypoint within the dynamic library.  On systems where the case of function names
in dynamic libraries is relevant, this name must be specified in the same case as the 
function name within the dynamic library.

The areas pointed to by all parameters are copied to a private area in the interface, so the 
programmer may de-allocate or reuse the area used for these parameters after the call has returned. 

The RexxRegisterFunctionDll() returns an unsigned long, which carries status information 
describing the outcome of the operation. The status will be one of the RXFUNC values:

[ RXFUNC_OK]
The handler was successfully registered.

[RXFUNC_DEFINED]
The  handler was successfully registered. There already existed another external 
function handler which was registered with RexxRegisterFunctionDll(), but this 
will be shadowed by the newly registered handler.

[RXFUNC_MODNOTFND]
The handler was not registered as the LibraryName was not found.

[RXFUNC_ENTNOTFND]
The handler was not registered as the InternalName was not found.

[RXFUNC_NOMEM]
The handler was not registered, due to lack of memory. 

 8.3.4 The RexxDeregisterFunction() function

This function is used to remove a particular external function handler from the list of registered 
external function handlers. The prototype of the function is:

APIRET APIENTRY RexxDeregisterFunction( 
PSZ FuncName

) ;

The parameter is an input value:
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[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the 
external function to be registered. This is the same name as the Rexx interpreter uses
with a function call or via  the CALL command.

The list of defined function handlers is searched, and if an environment matching the one named by 
the parameter are found, it is deleted.  This call is used to de-register function handlers registered 
with either RexxRegisterFunctionExe() or RexxRegisterFunctionDll().

The returned value from RexxDeregisterFunction() can be one of:

[RXFUNC_OK]
The handler was successfully deleted.

[RXFUNC_NOTREG]
The handler was not found.  

Most systems that do have dynamic linking have no method for reclaiming the space used by 
dynamically linked routines. So, even if you were able to load a dll, there are no guarantees that you
will be able to unload it. 

 8.3.5 The RexxQueryFunction() function

This function retrieves the status of an external function handler.  The prototype of the function is:

APIRET APIENTRY RexxQueryFunction(
PSZ FuncName

) ;

The significance of the parameters is:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the 
external function to be registered. This is the same name as the Rexx interpreter uses
with a function call or via  the CALL command.

The returned value from RexxQueryFunction() can be one of:

[RXFUNC_OK]
The external function handler was found.

[RXFUNC_NOTREG]
The handler was not found. 
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 8.4 Executing Rexx Code
This sections describes the RexxStart() function, which allows the application to startup the 
interpreter and make it interpret pieces of Rexx code. 

 8.4.1 The RexxStart() function

This function is used to invoke the Rexx interpreter in order to execute a piece of Rexx code, 
which may be located on disk, as a pre-tokenized macro, or as ASCII source code in memory.

APIRET APIENTRY RexxStart( 
LONG ArgCount,
PRXSTRING ArgList,
PCSZ ProgramName,
PRXSTRING Instore,
PCSZ EnvName,
LONG CallType,
PRXSYSEXIT Exits,
PSHORT ReturnCode,
PRXSTRING Result 

) ;

Of these parameters, ReturnCode and Result are output-only, while Instore is both input and 
output. The rest of the parameters are input-only. The significance of the parameters are:

[ArgCount]
The number of parameter strings given to the procedure. This is the number of 
defined Rexx-strings pointed to by the ArgList parameter. The default maximum 
number of arguments that can be passed is 32, but this can be changed by the 
MAX_ARGS_TO_REXXSTART macro in rexx.h.

[ArgList]
Pointer to an array of Rexx-strings, constituting the parameters to this call to Rexx. 
The size of this array is given by the parameter ArgCount. If ArgCount is greater 
than one, the first and last parameters are ArgList[0] and ArgList[ArgCount-1].  If 
ArgCount is 0, the value of  ArgList is irrelevant. 

If the strptr of one of the elements in the array pointed to by ArgList is NULL, that 
means that this parameter is empty (i.e. unspecified, as opposed to a string of zero 
size).

[ProgramName]
An ASCII NUL terminated string, specifying the name of the Rexx script to be 
executed. The value of Instore will determine whether this value is interpreted as the
name of a (on-disk) script, or a pre-tokenized macro. If it refers to a filename, the 
syntax of the contents of this parameter depends on the operating system.

[Instore]
Parameter used for storing tokenized Rexx scripts. This parameter might either be 
NULL, else it will be a pointer to two RXSTRING structures, the first holding the 
ASCII version of a Rexx program, the other holding the tokenized version of  that 
program. See below for more information about how to use Instore. 

[EnvName]
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Pointer to ASCII NUL terminated string naming the environment which  is to be the 
initial current environment when the script is started. If this parameter is set to 
NULL, the filetype is used as the initial environment name. What the filetype is, may
depend on your operating system, but in general it is everything after the last period 
'.' in the filename.

[CallType]
A value describing whether the Rexx interpreter is to be invoked  in command, 
function or subroutine mode. Actually, this has little significance. The main 
difference is that in command mode, only one parameter string can be passed, and in 
function mode, a value  must be returned. In addition, the mode chosen will affect 
the output of the PARSE SOURCE instruction in Rexx.

Three symbolic values of integral type are defined, which can be used for this 
parameter: RXCOMMAND,  RXFUNCTION and RXSUBROUTINE. 
A value of RXRESTRICTED can be OR'ed with one of the above types to specify 
that Regina will run in restricted mode. This is particularly useful when Regina is 
used as an embedded interpreter in applications such as a database procedural 
language or a web-browser scripting language.

[Exits]
A pointer to an array of exit handlers to be used. If no exit  handlers are to be 
defined, NULL may be specified. Each element in the array defines one exit handler, 
and the element  immediately following the last definition must have a 
sysexit_code set to RXENDLST. Each element's sysexit_name must match the 
EnvName specified in a call to RexxRegisterExitExe() or RexxRegisterExitDll() 
called prior to calling RexxStart().

[ReturnCode]
Pointer to a SHORT integer where the return code is stored, provided that the 
returned value is numeric, and within the range  -(2**15) to 2**15-1. I don't know 
what happens to ReturnCode if either of these conditions is not satisfied. It 
probably becomes undefined, which means that it is totally useless since the program
has to inspect the return string in order to determine whether ReturnCode is valid. 
Regina allows the value of this parameter to be NULL if the user is not interested in 
it.

[Result]
Points to a Rexx string into which the result string is written.  The caller may or may
not let the strptr field be supplied.  If supplied (i.e. it is non-NULL), that area will be
used, else a new area will be allocated. If the supplied area is used, its size is 
supposed to be given by the strlength field. If the size if not sufficient, a new area 
will be allocated, by RexxAllocateMemory(), and the caller must see to that it is 
properly de-allocated using  RexxFreeMemory().
Regina allows the value of this parameter to be NULL if the user is not interested in 
it. 

Note that the ArgCount parameter need not be the same as the ARG() built-in function would 
return. Differences will occur if the last entries in ArgList are null strings.

The Instore parameter needs some special attention. It is used to directly or indirectly specify 
where to fetch the code to execute. The following algorithm is used to determine what to execute: 

If  Instore is NULL, then ProgramName names the filename of an on-disk Rexx script 
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which it to be read and executed.

Else, if Instore is not NULL, the script is somewhere in memory, and no reading from disk 
is performed.  If both Instore[0].strptr and Instore[1].strptr are NULL, then the script to 
execute is a pre-loaded macro which must have been loaded with a call to either 
RexxAddMacro() or  RexxLoadMacroSpace(); and ProgName is the name of the macro
to execute.

Else, if Instore[1].strptr is non-NULL, then Instore[1] contains the pre-tokenized image of 
a Rexx script, and it is used for the execution.

Else, if  Instore[0].strptr is non-NULL, then Instore[0]} contains the ASCII image of a 
Rexx script, just as if the script had been read directly from the disk (i.e. including  
linefeeds and such). This image is passed to the interpreter, which tokenizes it, and stores the
tokenized script in the Instore[1] string, and then proceeds to execute that script. Upon 
return, the Instore[1] will be set, and can later be used to re-execute the script within the 
same process, without the overhead of tokenizing.

The user is responsible for de-allocating any storage used by Instore[1]. Note that after 
tokenizing, the source code in Instore[0] is strictly speaking not needed anymore. It will 
only be consulted if the user calls the SOURCELINE() built-in function. It is not an error to
use SOURCELINE() if the source is not present, but nullstring and zero will be returned. 

To tokenise a Rexx script and save it for execution by a later execution by RexxStart() 
either in the currently running process or outside the current process, you need to call 
RexxStart() with the following arguments:

Parameter Value Notes

ArgCount 1

ArgList.strlength 3

ArgList.strptr //T

ProgramName Ignored

Instore[0].strptr ASCII image of Rexx script

Instrore[0].strlength Length of Instore[0].strptr

Instrore[1].strptr Ignored This will be populated with the 
tokenised code.

Instore[1].strlength Ignored This will be set to the length of 
Instore[1].strptr

EnvName SYSTEM

CallType RXCOMMAND
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Parameter Value Notes

Exits NULL

ReturnCode Ignored

Result.strptr Ignored

Result.strlength Ignored

The valid return values from RexxStart() are:

[Negative]
indicates that a syntax error occurred during interpretation. In general, you can 
expect the error value to have the same absolute value as the Rexx syntax error (but 
opposite signs, of course).

[Zero]
indicates that the interpreter finished executing the script without errors.

[Positive]
indicates probably that some problem occurred, that made it impossible to execute 
the script, e.g. a bad parameter value.  However, I can't find any references in the 
documentation which  states which values it is supposed to return. 

During the course of an execution of  RexxStart(), subcommand handlers and exit handlers might 
be called. These may call any function in the application interface, including another invocation of
RexxStart().

Often, the application programmer is interested in providing support simplifying the specification of
filenames, like an environment variable search path or a default file type. The Rexx interface does 
support a default file type:  .CMD, but the user may not set this to anything else. Therefore, it is 
generally up to the application programmer to handle search paths, and also default file types 
(unless .CMD is OK).

If the initial environment name (EvnName) is NULL, then the initial environment during 
interpretation will be set equal to the file type of the script to execute. If the script does not have a 
file
type, it is probably set to some interpreter specific value. 
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 8.5 Variable Pool Interface
This section describes the variable pool part of the application interface, which allows the 
application programmer to set, retrieve and drop variables in the Rexx interpreter from the 
application program. It also allows access to other information. 

The C preprocessor symbol INCL_RXSHV must be defined if the definitions for the variable pool 
interface are to be made available when rexxsaa.h is included. 

 8.5.1 Symbolic or Direct

First, let us define two terms, symbolic variable name and direct variable name, which are used in 
connection with the variable pool.

A symbolic variable name is the name of a variable, but it needs normalization and tail substitution 
before it names the real variable. The name foo.bar is a symbolic variable name, and it is 
transformed by normalization, to FOO.BAR, and then by tail substitution to FOO.42 (assuming 
that the current value of  BAR is 42).

Normalization is the process of uppercasing all characters in the symbolic name; and tail 
substitution is the process of substituting each distinct simple symbol in the tail for its value.

On the other hand, a direct variable refers directly to the name of the variable. In a sense, it is a 
symbolic variable that has already been normalized and tail substituted. For instance, foo.bar is not 
a valid direct variable name, since lower case letters are not allowed in the variable stem. The direct
variable FOO.42 is the same as the variable above. For simple variables, the only difference 
between direct and symbolic variable names is that lower case letters are allowed in symbolic 
names

Note that the two direct variable names FOO.bar and FOO.BAR refer to different variables, since 
upper and lower case letters differ in the tail. In fact, the tail of a compound direct variable may 
contain any character, including ASCII NUL. The stem part of a variable, and all simple variables 
can not contain any lower case letters.

As a remark, what would the direct variable FOO. refer to: the stem FOO. or the compound 
variable having stem FOO. and a nullstring as tail? Well, I suppose the former, since it is the more 
useful. Thus, the latter is inaccessible as a direct variable.

 8.5.2 The SHVBLOCK structure

All requests to manipulate the Rexx variable pool are controlled by a structure which is called 
SHVBLOCK, having the definition:

typedef struct shvnode {
struct shvnode *shvnext ;    /* ptr to next in blk in chain */
RXSTRING shvname ;           /* name of variable */
RXSTRING shvvalue ;          /* value of variable */
ULONG shvnamelen ;   /* length of shvname.strptr */
ULONG shvvaluelen ;  /* length of shvvalue.strptr */
UCHAR shvcode ;      /* operation code */
UCHAR shvret ;       /* return code */
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} SHVBLOCK ;

typedef SHVBLOCK *PSHVBLOCK ;

The fields shvnext and shvcode are purely input, while shvret is purely output. The rest of the 
fields might be input or output, depending on the requested operation, and the value of the fields. 
The significance of each field is:

[shvnext]
One call to RexxVariablePool() may sequentially process many  requests. The 
shvnext field links one request to the next in  line. The last request must have set 
shvnext to NULL. The requests are handled individually and thus, calling 
RexxVariablePool() with several requests is equivalent to making one call to 
RexxVariablePool() for each request.

[shvname]
Contains the name of the variable to operate on, as a  RXSTRING. This field is only 
relevant for some requests, and its use may differ.

[shvvalue]
Contains the value of the variable to operate on as a RXSTRING. Like shvname, 
this might not be relevant for all  types of requests.

[shvnamelen]
The length of the array that shvname.strptr points to.  This  field holds the 
maximum possible number of characters in  shvname.strptr. While 
shvname.strlength holds the number of characters that are actually in use (i.e. 
defined).

[shvvaluelen]
The length of the array that shvvalue.strptr points to.  Relates to shvvalue, like 
shvnamelen relates to shvname. 

[shvcode]
The code of operation; decides what type of request to perform. A list of all the 
available requests is given below. 

[shvret]
A return code describing the outcome of the request. This code is a  bit special. The 
lower seven bits are flags which are set depending on whether some condition is met 
or not. Values above 127 are not  used in this field. 

There is a difference between shvnamelen and  shvname.strlength. The former is the total length
of the array of characters pointed to by shvname.strptr (if set). While the latter is the number of 
these characters that are actually in use.  When a SHVBLOCK is used to return data from 
RexxVariablePool(), and a pre-allocated string space has been  supplied, both these will be used; 
shvname.strlength will be set to the length of the data returned, while shvnamelen is never 
changed, only read to find the maximum number of characters that shvname can hold.

Even though shvnamelen is not really needed when shvname is used for input, it is wise to set it 
to its proper value (or at least set it to the same as shvname.strlength). The same applies for 
shvvalue and shvvaluelen. 

The field shvcode can take one of the following symbolic values:

[RXSHV_DROPV]
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The variable named by the direct variable name shvname is dropped (i.e. becomes 
undefined). The fields shvvalue and shvvaluelen do not matter.

[RXSHV_EXIT]
This is used to set the return value for an external function or exit handler. 

[RXSHV_FETCH]
The value of the variable named by the direct variable name shvname is retrieved 
and stored in shvvalue. If  shvvalue.strptr is NULL, the interpreter will allocate  
sufficient space to store the value (but it is the responsibility of the application 
programmer to release that space). Else, the  value will be stored in the area allocated
for shvvalue, and  shvvaluelen is taken to be the maximum size of that area.

[RXSHV_NEXTV]
This code is used to retrieve the names and values of all variables at the current 
procedure level; i.e. excluding variables shadowed by PROCEDURE.  The name 
and value of each variable are retrieved
simultaneously into shvname and  shvvalue, respectively.
Successive requests for RXSHV_NEXTV will traverse the interpreter's internal data 
structure for storing variables, and return a new pair of variable name and value for 
each request. Each variable that is visible in the current scope, is returned once and 
only once, but the order is non-deterministic.
When all available variables in the Rexx interpreter have already been retrieved, 
subsequent RXSHV_NEXTV requests will  set the flag RXSHV_LVAR in the 
shvret field.  There are a few restrictions. The traversal will be reset whenever the 
interpreter  resumes execution, so an incomplete traversal can not be continued in a 
later external function, exit handler, or subcommand handler.  Also, any set, fetch or 
drop operation will reset the traversal.  These restrictions have been added to ensure 
that the variable pool  is static throughout one traversal.

[RXSHV_PRIV]
Retrieves some piece of information from the interpreter, other than a variable value,
based on the value of the shvname field.  The value is stored in shvvalue as for a 
normal fetch. A  list of possible names is shown below.

[RXSHV_SET]
The variable named by the direct variable name shvname is set to the value given 
by shvvalue.

[RXSHV_SYFET]
Like RXSHV_FETCH, except that shvname is a symbolic variable name.

[RXSHV_SYDRO]
Like RXSHV_DROPV, except that shvname is a symbolic variable name. 

[RXSHV_SYSET]
Like RXSHV_SET, except that  shvname is a symbolic variable name. 

One type of request that needs some special attention is the RXSHV_PRIV, which retrieves a kind 
of meta-variable.  Depending on the value of  shvname, it returns a value in shvvalue describing 
some aspect of the interpreter. For  RXSHV_PRIV the possible values for  shvname are:

[PARM]
Returns the ASCII representation of the number of parameters to the currently active 
Rexx procedure. This may not be the same value as  the built-in function  ARG() 
returns, but is  the number  ArgCount in RexxStart().  The two might differ if a 
routine was called with trailing omitted parameters.

[PARM.n]
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The  n must be a positive integer; and the value returned will be the n'th parameter at
the current procedure level.  This  is not completely equivalent to the information 
that the built-in  function ARG() returns.  For parameters where  ARG() would  
return the state omitted, the returned value is a null string,   while for parameters 
where ARG() would return the state existing, the return value will be the parameter 
string (which may be a zero length string.

[QUENAME]
The name of the currently active external data queue. This feature has not yet been 
implemented in Regina, which always return default. 

[SOURCE]
Returns the same string that is used in the PARSE SOURCE clause in Rexx, at the 
current procedure level of interpretation.

[VERSION]
Returns the same string that is used in the PARSE VERSION clause in Rexx. 

The value returned by a variable pool request is a bit uncommon. A return value is computed for 
each request, and stored in the shvret field.  This is a one-byte field, of which the most significant 
bit is never set.  A symbolic value RXSHV_OK is defined as the value zero, and the shvret field 
will be equal to this name if none if  the flags listed below is set.  The symbolic value for these flags
are:

[RXSHV_BADF]
The shvcode of this request contained a bad function code.

[RXSHV_BADN]
The shvname field contained a string that is not valid in this context. What exactly 
is a valid value depends on whether the operation is a private, a symbolic variable, or
direct variable operation. 

[RXSHV_LVAR]
Set if and only if the request was RXSHV_NEXTV, and all available variables have 
already been retrieved by earlier requests.

[RXSHV_MEMFL]
There was not enough memory to complete this request. 

[RXSHV_NEWV]
Set if and only if the referenced variable did not previously have  a value. It can be 
returned for any set, fetch or drop operation.  

[RXSHV_TRUNC]
Set if the retrieved value was truncated when it was copied into either the shvname 
or  shvvalue  fields. See below.

These flags are directly suitable for logical OR, without shifting, e.g. to check for truncation and no 
variables left, you can do something like:

if (req->shvret & (RXSHV_TRUNC | RXSHV_LVAR))
printf("Truncation or no vars left\n") ;

RXSHV_TRUNC can only occur when the interface is storing a retrieved value in a SHVBLOCK, 
and the pre-allocated space is present, but not sufficiently large. As described for RXSHV_FETCH,
the interpreter will allocate enough space if shvvalue.strptr is NULL, and then RXSHV_TRUNC 
will never be set.  Else the space supplied by  shvvalue.strptr is used, and  shvvaluelen is taken as
the maximum length of shvvalue, and truncation will occur if the supplied space is too small.
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Some implementations will consider SHV_MEMFL to be so severe as to skip the rest of the 
operations in a chain of requests. In order to write compatible software, you should never assume 
that requests
following in a chain after a request that returned SHV_MEMFL have been performed.

RXSHV_BADN is returned if the supplied shvname contains a value that is not legal in this 
context. For the symbolic set, fetch and drop operations, that means a symbol that is a legal variable
name; both upper and lower case letters are allowed.  For the direct set, fetch and drop operations, 
that means a variable name after normalization and tail substitution is not a legal variable name. For
RXSHV_PRIV,  it must be one of the values listed above.

There is a small subtlety in the above description. TRL states that when a Rexx assignment assigns 
a value to a stem variable, all possible variables having that stem are assigned a new value 
(independent of whether they had an explicit value before). So, strictly speaking, if a stem is set, 
then a RXSHV_NEXTV sequence should return an (almost) infinite sequence of compound 
variables for that stem. Of course, that is completely useless, so you can assume that only 
compound variables of that stem given an explicit value after the stem was assigned a value will be 
returned by RXSHV_NEXTV. However, because of that subtlety, the variables returned by 
RXSHV_NEXTV for compound variables might not be representative for the state of the variables. 

e.g. what would a sequence of RXSHV_NEXT requests return after the following Rexx code ?:
foo. = 'bar'
drop foo.bar

The second statement here, might not change the returned values!  After the first statement, only the
stem  foo. would probably have been returned, and so also if all variables were fetched after the 
second statement.

 8.5.3 Regina Notes for the Variable Pool

Due to the subtleties described at the end of the previous subsection, some notes on how Regina 
handles RXSHV_NEXTV requests for compound variables are in order. The following rules 
applies:

 Both the stem variable FOO. and the compound variable having  FOO. as stem and a nullstring
as tail, are returned with the name of  FOO.. In this situation, a sequence of  RXSHV_NEXTV 
requests may seem to return values for the same variable twice. This is unfortunate, but it seems 
to be the only  way. In any case, you'll have to perform the RXSHV_SYFET in order to 
determine which is which.

 If a stem variable has not been assigned a value, its compound variables are only returned if 
they have been assigned an explicit value. i.e. compound variables for that stem that have either 
never been assigned a value, or have been dropped, will not be reported  by RXSHV_NEXTV. 
There is nothing strange about this.

 If a stem variable has been assigned a value, then its compound  variables will be reported in 
two cases: Firstly, the compound variables having explicitly been assigned a value afterward.  
Secondly, the compound variables which have been dropped  afterward, which are reported to 
have their initial value, and the  flag RXSHV_NEWV is set in shvret.

It may sound a bit stupid that unset variables are listed when the request is to list all variables which
have been set, but that is about the best I can do, if I am to stay within the standard definition and 
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return a complete and exact status of the variable pool. 

If the return code from RexxVariablePool() is less than 128, Regina is guaranteed to have tried to 
process all requests in the chain.  If the return code is  above 127, some requests may not have been
processed. Actually, the number 127 (or 128) is a bit inconvenient, since it will be an problem for 
later expansion of the standard. A much better approach would be to have a preprocessor symbol 
(say, 
RXSHV_FATAL, and if the return code from the RexxVariablePool() function was larger than 
that, it would be a direct error code, and not a composite  error code built from the shvret fields of 
the requests. The RXSHV_FATAL would then have to be the addition of all the atomic composite 
error codes.

(Warning: author mounting the soapbox.) 
The  right way to fix this, is  to let  the function  RexxVariablePool() set  another flag in
shvret (e.g.   named  RXSHV_STEM)  during  RXSHV_NEXTV if  and only if  the value
returned is a stem variable.  That way, the application programmer would be able to differ
between stem variables and compound variable with a null string tail.

To handle the other problem with compound variables and RXSHV_NEXTV, I would have
liked to return a null string in shvvalue if and only if the variable is a compound variable
having its initial value, and the stem of that compound variable has been assigned a value.
Then,  the  value of  the  compound variable  is  equal  to  its  name,  and is  available  in  the
shvname field.

I'd  also  like  to  see  that  the   shvret value  contained  other  information  concerning  the
variables, e.g. whether the variable was exposed at the current procedure level. Of course,
Regina does not contain any of these extra, non-standard features. 

(Author is dismounting the soapbox.)

When Regina is returning variables with RXSHV_NEXTV, the variables are returned in the order 
in which they occur in the open hash table in the interpreter. i.e. the order in which variables 
belonging to different bins are returned is consistent, but the order in which variables hashed to the 
same bin are returned, is non-deterministic. Note that all compound variables belonging to the same
stem are returned in one sequence.

 8.5.4 The RexxVariablePool() function

This function is used to process a sequence of variable requests, and process them sequentially. The 
prototype of this function is:

APIRET APIENTRY ULONG RexxVariablePool(
SHVBLOCK *Request

) ;

Its only parameter is a pointer to a SHVBLOCK structure, which may be the first of the linked list. 
The function performs the operation specified in each block. If an error should occur, the current 
request is terminated, and the function moves on to the next request in the chain. 

The result value is a bit peculiar. If the returned value is less than 128, it is calculated by logically 
OR'ing the returned shvret field of all the requests in the chain. That way, you can easily check 
whether any of the requests was e.g. skipped because of lack of  memory. To determine which 
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request, you have to iterate through the list.

If the result value is higher than 127, it signifies an error. If any of these values are set, you can not 
assume that any of the requests have been processed. The following symbolic name gives its 
meaning.

[RXSHV_NOAVL]
Means that the interface is not available for this request.  This  might occur if the 
interface was not able to start the interpreter,  or if an operation requested a variable 
when the interpreter is not currently executing any script (i.e. idle and waiting for a 
script  to execute).
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 8.6 The System Exit Handler Interface
The exit handlers provide a mechanism for governing important aspects of the Rexx interpreter 
from the application: It can trap situations like the interpreter writing out text, and then handle them 
itself, e.g. by displaying the text in a special window. You can regard system exits as a sort of  
hooks. 

 8.6.1 The System Exit Handler

Just like the subcommand handler, the system exit handler is a routine supplied by the application, 
and is called by the interpreter when certain situations occur. These situations are described in detail
later. For the examples below, we will use the output from SAY as an example. 

If a system exit handler is enabled for the SAY instruction, it will be called with a parameter 
describing the text that is to be written out. The system exit handler can choose to handle the 
situation (e.g. by writing the text itself), or it can ignore it and let the interpreter perform the output. 
The return code from the system exit tells the interpreter whether a system exit handled the situation
or not. 

A system exit handler must be a routine defined according to the prototype:

LONG APIENTRY my_exit_handler(
LONG ExitNumber,
LONG Subfunction, 
PEXIT ParmBlock

) ;

In this prototype, the type PEXIT is a pointer to a parameter block containing all the parameters 
necessary to handle the situation. The actual definition of this parameter block will vary, and is 
described in detail in the list of each system exit.

The exits are defined in a two-level hierarchy. The ExitNumber defines the main function for a 
system exit, while the Subfunction defines the subfunction within that main function.  e.g. for 
SAY, the main function will be RXSIO (the system exit for standard I/O) and the subfunction will 
be RXSIOSAY. The RXSIO main function has other sub-functions for handling trace output, 
interactive trace input, and PULL input from standard input.

The value returned from the system exit handler must be one of the following symbolic values:
[RXEXIT_HANDLED]

Signals that the system exit handler took care of the situation,  and that the 
interpreter should not proceed to do the default  action. For the  SAY instruction, this
means that the  interpreter will not print out anything. 

[RXEXIT_NOT_HANDLED]
Signals that the system exit handler did not take care of the situation, and the 
interpreter will proceed to perform the default  action. For the SAY instruction, this 
means that it must  print out the argument to SAY.

[RXEXIT_RAISE_ERROR]
Signals that the interpreter's default action for this situation should not be performed,
but instead a SYNTAX condition  should be raised. Don't get confused by the name, 
it is not the ERROR condition, but the SYNTAX condition is raised, using  the 
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syntax error Failure in system service (normally numbered  48).

In addition to returning information as the numeric return value, information may also be returned 
by setting variables in the parameter block. For instance, if the system exit is to handle interactive 
trace input, that is how it will supply the interpreter with the input string. 

It is a good and disciplined practice to let your exit handlers start by verifying the ExitNumber and 
Subfunction codes, and immediately return RXEXIT_NOT_HANDLED if it does not recognize 
both of them. That way, your application will be upwards compatible with future interpreters which 
might have more sub-functions for any given main function.

 8.6.2 List of System Exit Handlers

 8.6.2.1 RXFNC - The External Function Exit Handler
The RXFNC system exit handler provides hooks for external functions.  It has only one 
subfunction; RXFNCCAL, which allows an application  program to intervene and handle any 
external function or subroutine.

Do not confuse this exit handler with the external function routines which allow you to define new 
Rexx, semi-built-in functions.  The exit handler is called for all invocations of external routines, 
and can be called for function names which you were unaware of.

The parameter ParmBlock for RXFNCCAL is defined as:

typedef struct {
typedef struct {

unsigned int rxfferr:1 ;
unsigned int rxffnfnd1 ;
unsigned int rxffsub: 1;

} rxfnc_flags ;
unsigned char *rxfnc_address ;
unsigned short rxfnc_addressl ;
unsigned char *rxfnc_que ;
unsigned short rxfnc_quel ;
unsigned short rxfnc_argc;
RXSTRING *rxfnc_argv ;
RXSTRING rxfnc_retc ;

} RXFNCCAL_PARM ;

The significance of each variable is: 
[rxfnc_flags.rxfferr]

Is an output parameter that is set on return in order to inform the interpreter that the 
function or subroutine was incorrectly called, and thus the SYNTAX condition 
should be raised.

[rxfnc_flags.rxffnfnd]
Is an output parameter that tells the interpreter that the function was not found.  Note
the inconsistency: it is only effective if the exit handler returns 
RXEXIT_HANDLED, which looks like a logic contradiction to setting the not-found
flag.

[rxfnc_flags.rxffsub]
Is an input parameter that tells the exit handler whether it was called for a function or
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subroutine call.  If set, the call being handled is a subroutine call and returning a 
value is optional; else it was called for a function, and must return a value in 
rxfnc_retc if RXEXIT_HANDLED is to be returned.

[rxfnc_name]
Is a pointer to the name of the function or subroutine to be handled, stored as a 
character array.  This is an input parameter, and its length is given by the 
rxfnc_namel parameter.

[rxfnc_namel]
Holds the length of rxfnc_name. Note that the last character is the letter ell, not the 
number one. 

[rxfnc_que]
Points to a character array holding the name of the currently active queue.  This is an
input parameter.  The length of this name is given by the rxfnc_quel field.

[rxfnc_que1]
Holds the length of rxfnc_que. Note that the last character is the letter ell, not the 
number one. 

[rxfnc_argc]
Is the number of arguments passed to the function or subroutine.  It defines the size 
of the array pointed to by the rxfnc_argv field.

[rxfnc_argv]
Points to an array holding the parameters for the routines. The size of this array is 
given by the rxfnc_argc field.  If rxfnc_argc is zero, the value of rxfnc_argv is 
undefined.

[rxfnc_retc]
Holds an RXSTRING structure suitable for storing the return value of the handler.  
It is the responsibility of the handler to allocate space for the contents of this string 
(i.e. the array pointed to by the rxfnc_retc.strptr).

 8.6.2.2 RXCMD - The Subcommand Exit Handler
The main function code for this exit handler is given by the symbolic name RXCMD. It is called 
whenever the interpreter is about to call a subcommand, i.e. a command to an external environment.
It has only one subfunction: RXCMDHST. 

The ParmBlock parameter for this subfunction has the following  definition: 

typedef struct {
typedef struct {

unsigned int rxfcfail:1 ;
unsigned int rxfcerr:1 ;

} rxcmd_flags ;
unsigned char *rxcmd_address ;
unsigned short rxcmd_addressl ;
unsigned char *rxcmd_dll ;
unsigned short rxcmd_dll_len ;
RXSTRING rxcmd_command ;
RXSTRING rxcmd_retc ;

} RXCMDHST_PARM ;

The significance of each variable is: 
[rxcmd_flags.rxfcfail]
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If this flag is set, the interpreter will raise a FAILURE condition at the return of the 
exit handler. 

[rxcmd_flags.rxfcerr]
Like the previous, but the ERROR condition is raised instead.

[rxcmd_address]
Points to a character array containing the name of the environment  to which the 
command normally would be sent. 

[rxcmd_addressl]
Holds the length of rxcmd_address. Note that the last character is the letter ell, not 
the number one. 

[rxcmd_dll]
Defines the name for the DLL which is to handle the command. I'm not sure what 
this entry is used for. It is not currently in use for Regina. 

[rxcmd_dll_len]
Holds the length of rxcmd_dll. If this length is set to  zero, the subcommand handler
for this environment is not a DLL, but an EXE handler. 

[rxcmd_command]
Holds the command string to be executed, including command  name and 
parameters. 

[rxcmd_retc]
Set by the exit handler to the string which is to be considered the  return code from 
the command. It is assigned to the special variable RC at return from the exit 
handler.  The user is  responsible for allocating space for this variable. I have no 
clear idea what happens if rxcmd_retc.strptr is set to   NULL;  it might set RC to 
zero, to the null string, or even  drop it.

It seems that this exit handler is capable of raising both the ERROR and the  FAILURE conditions 
simultaneously. I don't know whether that is legal, or whether only the FAILURE condition is 
raised, since the ERROR condition is a sort of  subset  of  FAILURE.

Note that the return fields of the parameter block are only relevant  if the value 
RXEXIT_HANDLED was returned. This applies to the rxcmd_flags and  rxcmd_retc fields of the
structure.

 8.6.2.3 RXMSQ - The External Data Queue Exit Handler
The external data queue exit handler is used as a hook for operations manipulating the external data 
queue (or the stack).  Unfortunately, the stack is a borderline case of what is relevant to the Rexx 
SAA API.  Operations like putting something on, retrieving a string from, obtaining the size, etc. of 
the stack is not part of the SAA API.
However, some of this functionality is seemingly here; but not all.  For instance for the 
RXMSQPLL subfunction, SAA API is called by the interpreter before the interpreter calls whatever
system-specific call is available for retrieving a string from the stack.
Thus the SAA API can be used by an application to provide the interpreter with a fake stack, but it 
is not a suitable means for the application itself to manipulate the real stack.
The RXMSG exit has four subfunctions:

[RXMSQPLL]
This is called before a line is retrieved from the stack and the application may itself 
provide the interpreter with an alternative line.  On entry, the third parameter points 
to a structure having the following definition:
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typedef struct {
RXSTRING rxmsq_retc;

} RXMSQPLL_PARM;

The rxmsq_retc field holds the string to be retrieved from the stack.  Note that it is 
an output parameter, so its value on entry is undefined.

[RXMSQPSH]
This is called before the interpreter puts a line on the stack, and it may grab the line 
itself, and thus prevent the interpreter from putting the line on the stack.  Note that 
this exit handles both pushing and queuing.  The third parameter is:

typedef struct {
struct {

unsigned rxfmlifo: 1;
} rxmsq_flags;
RXSTRING rxmsq_value;

} RXMSQPSH_PARM;

Here the field rxmsq_value holds the string to be put on the stack.  Whether the 
string is to be pushed or queued is determined by the boolean value 
rxmsq_flags.rxmlfifo, which is TRUE if the string is to be pushed.
All values are input values.  What happens if you change them is not defined in the 
SAA API.  Some implementations may let you modify the contents of rxmsq_value 
and return RXEXIT_NOT_HANDLED and the string push by the interpreter 
contains the modified string.  However, you should not rely on this since it is highly 
incompatible.  You may not de-allocate rxmsq_value.

[RXMSQSIZ]
this is called before the interpreter tries to determine the size of the stack, and it may 
present an alternative size to the interpreter.  The third parameter is:

typedef struct {
ULONG rxmsq_size;

} RXMSQSIZ_PARM;

The field rxmsq_size can be set to the number the application wants the 
QUEUED() function to return.  Note that this parameter is undefined on entry, so it 
cannot be used to retrieve the number of lines on the stack.

[RXSQNAM]
This is called before the interpreter tries to retrieve the name of the current stack, and
it may present the interpreter with an alternative name.  Note that this functionality is
part of SAA but not TRL; it supports the Get option of the RXQUEUE() built-in 
function.  Note that there are no other exits supporting the other options of 
RXQUEUE().  The third parameter for this exit is:

typedef struct {
RXSTRING rxmsq_name;

} RXMSQNAM_PARM;

As with RXSQMSIZ, the field rxmsq_name can be set to the name which the 
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application wants to return to the interpreter as the name of the current stack.  Note 
that this is an output-only parameter; its value on input is undefined, and in particular
is not the name of the real stack.

Note that this area is troublesome.  In TRL, external data queues are not defined as part of the 
language, while in SAA it is.  Thus, TRL-compliant interpreters are likely to implement stacks in 
various ways that may not be compatible with the SAA.

 8.6.2.4 RXSIO - The Standard I/O Exit Handler
The main code for this exit handler has the symbolic value RXSIO. There are four sub-functions:

[RXSIODTR]
Called whenever the interpreter needs to read a line from the user during interactive 
tracing. Note the difference between this subfunction and  RXSIOTRD.

[RXSIOSAY]
Called whenever the interpreter tries to write something to standard output in a  SAY
instruction, even a SAY instruction without a parameter.

[RXSIOTRC]
Called whenever the interpreter tries to write out debugging information, e.g. during 
tracing, as a trace back, or as a syntax error message.

[RXSIOTRD]
Called whenever the interpreter need to read from the standard input stream during a 
PULL or PARSE PULL instruction.  Note that it will not be called if there is 
sufficient data on the  stack to satisfy the operation.

Note that these function are only called for the exact situations that are listed above. e.g. the 
RXSIOSAY is not called during a call to the Rexx built-in function LINEOUT() that writes to the 
default output stream. TRL says that SAY is identical to calling LINEOUT() for the standard output
stream, but SAA API still manages to see the difference between stem variables and compound 
variables with a ``zero-length-string'' tail. Please bear with this inconsistency.

Depending on the subfunction, the ParmBlock parameter will have four only slightly different 
definitions. It is kind of frustrating that the ParmBlock takes so many different datatypes, but it can
be handled easily using unions, see a later section. The definitions are:

typedef struct {
RXSTRING rxsiodtr_retc ;  /* the interactive trace input */

} RXSIODTR_PARM ;

typedef struct {
RXSTRING rxsio_string ;   /* the SAY line to write out */

} RXSIOSAY_PARM ;

typedef struct {
RXSTRING rxsio_string ;   /* the debug line to write out */

} RXSIOTRC_PARM ;

typedef struct {
RXSTRING rxsiotrd_retc ;  /* the line to read in */

} RXSIOTRD_PARM ;
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In all of these, the RXSTRING structure either holds the value to be written out  (for RXSIOSAY 
and RXSIOTRC), or the value to be used instead of reading standard input stream  (for 
RXSIOTRD and RXSIODTR). Note that the values set by RXSIOTRD and RXSIODTR are 
ignored if the exit handler does not return the value RXEXIT_HANDLED.
 
Any end-of-line marker are stripped off the strings in this context. If the exit handler writes out the 
string during RXSIOSAY or RXSIOTRC, it must supply any end-of-line action itself. Similarly, 
the interpreter does not expect a end-of-line marker in the data returned from RXSIODTR and 
RXSIOTRD.

The space used to store the return data for the RXSIODTR and RXSIOTRD sub-functions, must be
provided by the exit handler itself, and the space is not de-allocated by the interpreter. The space 
can be reused by the application at any later time. The space allocated to hold the data given by the 
RXSIOSAY and RXSIOTRC sub-functions, will be allocated by the interpreter, and must neither 
be de-allocated by the exit handler, nor used after the exit handler has terminated.

 8.6.2.5 RXHLT - The Halt Condition Exit Handler
Note:  Because the RXHLT exit handler is called after every Rexx instruction, enabling this exit 
slows Rexx program execution. 

The main code for this exit handler has the symbolic value RXHLT. There are two sub-functions:
[RXHLTTST]

Called whenever the interpreter polls externally raised HALT conditions; i.e. after 
every Rexx instruction.

The definition of the ParmBlock is:

typedef struct {
unsigned rxfhhlt : 1 ;

} RXHLTTST_PARM ;

The rxfhhlt parameter is set to the state of the HALT condition in the interpreter; 
either TRUE or FALSE.

[RXHLTCLR]

Called to acknowledge processing of the HALT condition when the interpreter has 
recognized and raised a HALT condition. 

 8.6.2.6 RXTRC - The Trace Status Exit Handler
Not implemented.

 8.6.2.7 RXINI - The Initialization Exit Handler
RXTER and this exit handler are a bit different from the others. RXINI provides the application 
programmer with a method of getting control before the execution of the script starts. Its main 
purpose is to enable manipulation of the variable pool in order to set up certain variables before the 
script starts, or set the trace mode. 

It has only one subfunction, RXINIEXT, called once during each call to RexxStart(): just before 
the first Rexx statement is interpreted.  Variable manipulations performed during this exit will have 

234



effect when the script starts.

As there is no information to be communicated during this exit, the value of  ParmBlock is 
undefined.  It makes no difference whether you return RXEXIT_HANDLED or 
RXEXIT_NOT_HANDLED, since there is no situation to handle. 

 8.6.2.8 RXTER - The Termination Exit Handler
This exit resembles RXINI. Its sole subfunction is RXTEREXT, which is called once, just after the 
last statement of the Rexx script has been interpreted. The state of all variables are intact during this
call; so it can be used to retrieve the values of  the variables at the exit of a script. (In fact, that is the
whole purpose of this exit handler.)

Like RXINI, there is no information to be communicated during the exit, so ParamBlock is 
undefined in this call. And also like RXINI, it is more of a hook than an exit handler, so it does not 
matter whether you return RXEXIT_HANDLED or RXEXIT_NOT_HANDLED.

 8.6.2.9 RXENV - The External Environment Exit Handler
This System Exit is specific to Regina, so caution should be exercised if you plan on making your 
code portable to other Rexx interpreters.

The main code for this exit handler has the symbolic value RXENV. There are four sub-functions:
[RXGETENV]

Called whenever the BIF; VALUE() is called to obtain a value from the external 
environment. i.e. the call to VALUE() is of the form: 
VALUE('VARNAME', ,'ENVIRONMENT').

[RXSETENV]
Called whenever the  BIF; VALUE() is called to set a value in the external 
environment. i.e the call to VALUE() is of the form: 
VALUE('VARNAME',newvalue,'ENVIRONMENT').

[RXGETCWD]
Called whenever the current working directory is needed to be obtained from the 
environment. The DIRECTORY() BIF respects this system exit.

[RXSETCWD]
Called whenever the  current working directory is changed by a call to 
DIRECTORY() or CHDIR() BIFs.

The ParmBlock parameter has the following definitions for each sub-function type:

typedef struct {
RXSTRING rxenv_name ;  /* the name of the external environment variable */
RXSTRING rxenv_value ;  /* the returned value of the external environment 

variable */
} RXGETENV_PARM ;

typedef struct {
RXSTRING rxenv_name ;  /* the name of the external environment variable */
RXSTRING rxenv_value ;  /* the value of the external environment variable */

} RXSETENV_PARM ;
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In both of these, the RXSTRING; rxenv_name structure holds the name of the environment 
variable as known by the external environment.  Note that the values set by RXSIOTRD and 
RXSIODTR are ignored if the exit handler does not return the value RXEXIT_HANDLED.
 
The space used to store the return data for the RXSIODTR and RXSIOTRD sub-functions, must be
provided by the exit handler itself, and the space is not de-allocated by the interpreter. The space 
can be reused by the application at any later time. The space allocated to hold the data given by the 
RXSIOSAY and RXSIOTRC sub-functions, will be allocated by the interpreter, and must neither 
be de-allocated by the exit handler, nor used after the exit handler has terminated.

 8.6.3 The RexxRegisterExitExe() function

This function is used to register a system exit handler with the interface. The system exit handler 
must be a procedure located within the code of  the application. After registration, the Rexx 
interpreter will execute the system exit handler when the approriate event is triggered in the 
interpreter.

The prototype for RexxRegisterExitExe() is:

APIRET APIENTRY RexxRegisterExitExe( 
PCSZ EnvName,
PFN EntryPoint,
PUCHAR UserArea

) ;

All the parameters are input:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the 
system exit handler to be registered. 

[EntryPoint]
Points to the entrypoint of the system exit handler routine to be registered. See 8.6.1
The System Exit Handler for more information. 

[UserArea]
Pointer to an 8 byte area of information that is to be associated  with this 
environment. This data can be accessed via the RexxQueryExit() function.  If no 
user-supplied data required, set this to NULL.

The RexxRegisterExitExe() returns an unsigned long, which carries status information 
describing the outcome of the operation. The status will be one of the RXEXIT values:

[ RXEXIT_OK]
The handler was successfully registered.

[RXEXIT_LOADERR]
?? 

[RXEXIT_NOTINIT]
?? 

[RXEXIT_DUP]
The  handler was successfully registered. There already existed another system exit 
handler which was registered with RexxRegisterExitExe(), but this will be 
shadowed by the newly registered handler.
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[RXEXIT_NOTREG]
Due to some error, the handler was not registered. Probably because a handler for 
EnvName was already defined at a  previous call to RexxRegisterExitExe().

[RXEXIT_NOEMEM]
The handler was not registered, due to lack of memory. 

[RXEXIT_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried 
through. Regina addition.

 8.6.4 The RexxRegisterExitDll() function

This function is used to set up a routine that is located in a module in a dynamic link library, as a 
system exit handler. After registration, the Rexx interpreter will execute the system exit handler 
when the approriate event is triggered in the interpreter.
Some operating systems don't have dynamic linking, and thus cannot make use of this facility. The 
prototype of this function is:

APIRET APIENTRY RexxRegisterExitDll(
PSZ EnvName,
PSZ ModuleName,
PFN EntryPoint,
PUCHAR UserArea,
ULONG DropAuth

) ;

All the parameters are input, and their significance are:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the 
system exit handler to be registered. 

[ModuleName]
Points to an ASCII NUL terminated character string which defines the name of the 
dynamic or shared library in which the EntryPoint to the system exit exists. 

[EntryPoint]
Points to the entrypoint of the system exit handler routine for the environment to be 
registered. See the section on System Exit Handlers for more information. There is 
an upper limit for the  length of this name.

[UserArea]
Pointer to an 8 byte area of information that is to be associated  with this 
environment. This data can be accessed via the RexxQueryExit() function. This 
pointer can be NULL if no such  area is necessary.

[DropAuth]
Is either RXEXIT_DROPABLE or RXEXIT_NONDROP. This argument is ignored
by Regina as system exits only exist within the current process. 

The areas pointed to by  EnvName, ModuleName and  UserArea are copied to a private area in 
the interface, so the programmer may de-allocate or reuse the area used for these parameters after 
the call has returned. 

RexxRegisterExitDll() returns an unsigned long, which carries status information describing the 
outcome of the operation. The status will be one of the RXEXIT values:
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[ RXEXIT_OK]
The system exit handler was successfully registered.

[RXEXIT_DUP]
The system exit handler was successfully registered. There already existed another 
system exit handler which was registered with RexxRegisterExitDll(), but this will 
be shadowed by the newly registered handler.

[RXEXIT_NOTREG]
Due to some error, the handler was not registered. Probably because a handler for 
EnvName was already defined at a  previous call to RexxRegisterExitDll().

[RXEXIT_NOEMEM]
The handler was not registered, due to lack of memory. 

[RXEXIT_BADTYPE]
Indicates that the handler was not registered, due to one or more of the parameters 
having invalid values. Regina addition.

 8.6.5 The RexxDeregisterExit() function

This function is used to remove a particular environment from the list of registered environments. 
The prototype of the function is:

APIRET APIENTRY RexxDeregisterExit( 
PSZ EnvName,
PSZ ModuleName 

) ;

Both parameters are input values:

[EnvName]
Pointer to ASCII NUL terminated string, which represents the name of the 
environment to be removed.

[ModuleName]
Also an ASCII NUL terminated string, which points to the name of  the module 
containing the system exit handler of the environment to be deleted.

The list of defined environments is searched, and if an environment matching the one named by the 
first parameter are found, it is deleted. 

The returned value from RexxDeregisterExit() can be one of:

[RXEXIT_OK]
The system exit handler was successfully deleted.

[RXEXIT_NOTREG]
The system exit handler was not found.  

[RXEXIT_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried 
through. Regina addition.

[RXEXIT_NOCANDROP]
Unable to deregister the system exit handler. Regina addition.

Most systems that do have dynamic linking have no method for reclaiming the space used by 
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dynamically linked routines. So, even if you were able to load a dll, there are no guarantees that you
will be able to unload it. 

 8.6.6 The RexxQueryExit() function

This function retrieves information about a previously registered system exit handler. The prototype
of the function is:

APIRET APIENTRY RexxQueryExit(
PSZ EnvName,
PSZ ModuleName,
PUSHORT Flag,
PUCHAR UserArea 

) ;

The significance of the parameters are:

[EnvName]
Pointer to an ASCII NUL terminated character string, which names the system exit 
handler about which information is to be returned. 

[ModuleName]
Pointer to an ASCII NUL terminated character string, which names a dynamic link 
library. Only the named library will be searched for the system exit handler named 
by  EnvName. This parameter must be NULL if all system exit handlers are to be 
searched. 

[Flag] 
Pointer to a short which is to receive the value RXEXIT_OK or 
RXEXIT_NOTREG. In fact, this is the same as the return value from the function. 

[UserArea]
Pointer to an area of 8 bytes. The userarea of the system exit handler is copied to the
area pointed to by UserArea. This parameter might be NULL if the data of the 
userarea is  not needed. 

The returned value from RexxQueryExit() can be one of:

[RXEXIT_OK]
The system exit handler was found, and the required information has  been returned 
in the Flag and  UserArea variables. 

[RXEXIT_NOTREG]
The system exit handler was not found. The Flag variable will also be set to this 
value, and the UserArea variable is not changed. 

[RXEXIT_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried 
through. Regina addition.
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 8.7 The External Queue Interface
The external queue interface provide a mechanism for interacting with the interpreter's external 
queues. This interface is analogous to a Rexx program's use of PUSH, QUEUE, PULL, and 
RXQUEUE(). Note that this interface only works with the external queues, it cannot interface to the
internal named queues that exists within the interpreter.

 8.7.1 The RexxCreateQueue() function

This function is used to create a new, named, external queue.

The prototype for RexxCreateQueue() is:

APIRET APIENTRY RexxCreateQueue( 
PSZ Buffer,
ULONG BuffLen,
PSZ RequestedName,
ULONG *DupFlag

) ;

The following parameters are input, and their significance are:

[RequestedName]
Points to an ASCII NUL terminated character string which specifies the name of the 
queue to be created.  See Queue Names for the structure of a queue name. If the user 
wishes to have the interpreter create a unique queue name on the local queue server 
at the default port number, then this value should be set to NULL. To request an 
interpreter-generated queue name, on the machine fred listening on port 5858, then 
specify @fred:5858. i.e. leave the queue name portion blank.

The following parameters are output, and their significance are:

[Buffer]
Points to an ASCII NUL terminated character string allocated by the user.  The name 
of the queue that is created will be copied into this area.

[BuffLen]
Specifies the size of the memory area pointed to by Buffer. 

[DupFlag]
Indicates if the queue name specified already exists.  If a queue name already exists, 
DupFlag is set to 1, otherwise it is set to 0.

 

The RexxCreateQueue() returns an unsigned long, which carries status information describing 
the outcome of the operation. The status will be one of the RXQUEUE values:

[RXQUEUE_OK]
The queue was successfully created.

[RXQUEUE_NOEMEM]
The queue was not created, due to lack of memory. 

[RXQUEUE_BADQNAME]
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The queue name is invalid or “SESSION” is specified. 

 8.7.2 The RexxDeleteQueue() function

This function is used to delete a named, external queue.

The prototype for RexxDeleteQueue() is:

APIRET APIENTRY RexxDeleteQueue( 
PSZ QueueName

) ;

The only parameters is an input, and its significance is:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the name of the 
queue to be deleted.  See Queue Names for the structure of a queue name. 

The RexxDeleteQueue() returns an unsigned long, which carries status information describing 
the outcome of the operation. The status will be one of the RXQUEUE values:

[RXQUEUE_OK]
The queue was successfully deleted.

[RXQUEUE_NOTREG]
The queue name specified does not exist.

[RXQUEUE_BADQNAME]
The queue name was not specified. 

 8.7.3 The RexxQueryQueue() function

This function is used to determine the number of items that are available on the named, external 
queue.

The prototype for RexxQueueQueue() is:

APIRET APIENTRY RexxQueryQueue( 
PSZ QueueName,
ULONG *Count

) ;

One parameters is an input, and its significance is:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the name of the 
queue to be queried.  See Queue Names for the structure of a queue name. 

The following parameter is output, and its significance is:

[Count]
Points to an unsigned long which indicates the number of items on the specified 
queue.
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The RexxQueryQueue() returns an unsigned long, which carries status information describing 
the outcome of the operation. The status will be one of the RXQUEUE values:

[RXQUEUE_OK]
The queue was successfully queried, and Count contains the number of items on the 
queue.

[RXQUEUE_NOTREG]
The queue name specified does not exist.

[RXQUEUE_BADQNAME]
The queue name was not specified

 8.7.4 The RexxAddQueue() function

This function is used to determine add an item to a named, external queue.

The prototype for RexxAddQueue() is:

APIRET APIENTRY RexxAddQueue( 
PSZ QueueName,
PRXSTRING EntryData,
ULONG AddFlag

) ;

All parameters are input, and their significance are:
[QueueName]

Points to an ASCII NUL terminated character string which specifies the name of the 
queue on which the data is to be added.  See Queue Names for the structure of a 
queue name. 

[EntryData]
Points to a RXSTRING structure containing the data to be added to the queue.

[AddFlag]
Indicates how the data is to be added. Can be one of:
RXQUEUE_FIFO, to indicate that the data is to be added in a first-in-first-out order. 
This is equivalent to the QUEUE keyword.
RXQUEUE_LIFO, to indicate that the data is to be added in a last-in-first-out order. 
This is equivalent to the PUSH keyword.

The RexxAddQueue() returns an unsigned long, which carries status information describing the 
outcome of the operation. The status will be one of the RXQUEUE values:

[RXQUEUE_OK]
The data was successfully added to the specified queue.

[RXQUEUE_NOTREG]
The queue name specified does not exist.

[RXQUEUE_BADQNAME]
The queue name was not specified

 8.7.5 The RexxPullQueue() function

This function is used to extract an item from the specified named, external queue. When successful, 
the item from the queue is returned, and that item deleted from the queue.
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The prototype for RexxPullQueue() is:

APIRET APIENTRY RexxPullQueue( 
PSZ QueueName,
PRXSTRING DataBuf,
PDATETIME TimeStamp,
ULONG WaitFlag

) ;

The following parameters are input, and their significance are:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the name of the 
queue from which the data is to be extracted.  See Queue Names for the structure of 
a queue name. 

[WaitFlag]
Indicates if the process should wait until there is data in the specified queue before 
returning.  This could cause the process to block forever, if no data is due in the 
queue.  Regina does not support this option at this stage; RXQUEUE_NOWAIT is 
assumed Value can be one of:
RXQUEUE_WAIT, the process is to block and wait for data if the queue is currently 
empty.
RXQUEUE_NOWAIT, the process does not wait for data in the queue if it is 
currently empty. RexxPullQueue() will return RXQUEUE_EMPTY if there is no 
data in the queue.

The following parameters are output, and their significance are:

[DataBuf]
Points to a RXSTRING structure into which the contents of the extracted item are 
placed.  The memory associated with the RXSTRING strptr, should be deallocated 
using RexxFreeMemory().

[TimeStamp]
Points to a PDATETIME structure, which on return, contains the time details of 
when the item was added to the external queue.  Regina does not support this option
at this stage.

The RexxPullQueue() returns an unsigned long, which carries status information describing the 
outcome of the operation. The status will be one of the RXQUEUE values:

[RXQUEUE_OK]
The data was successfully added to the specified queue.

[RXQUEUE_NOTREG]
The queue name specified does not exist.

[RXQUEUE_BADQNAME]
The queue name was not specified

[RXQUEUE_EMPTY]
The queue was empty and RXQUEUE_NOWAIT was specified.

[RXQUEUE_BADWAITFLAG]
The value of the WaitFlag parameter was not RXQUEUE_WAIT or 
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RXQUEUE_NOWAIT.
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 8.8 The Macro Space Interface
The macro space interface provide a mechanism for pre-loading external Rexx programs into the 
current interpreter's macro space, so that the macros can be executed faster than reading them from 
disk each time they are called. This interface is not available in Regina at this stage.

 8.8.1 The RexxAddMacro() function

 8.8.2 The RexxDropMacro() function

 8.8.3 The RexxSaveMacroSpace() function

 8.8.4 The RexxLoadMacroSpace() function

 8.8.5 The RexxQueryMacro() function

 8.8.6 The RexxReorderMacro() function

 8.8.7 The RexxClearMacroSpace() function
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 8.9 Allocating and De-allocating Space
For several of the functions described in this chapter, the application calling them must allocate or 
de-allocate dynamic memory.  Depending on the operating system, compiler and Rexx interpreter, 
the method for these allocations and de-allocations vary. Because of this, Regina supplies the API 
function calls RexxAllocateMemory() and RexxFreeMemory(). These functions are wrappers for 
the appropriate compiler or operating system memory functions.

 8.9.1 The RexxAllocateMemory() function

The prototype for RexxAllocateMemory() is:

PVOID APIENTRY RexxAllocateMemory( 
ULONG size

) ; 

The parameter is an input, and its significance is:

[size]
The number of bytes of dynamic memory requested.  

RexxAllocateMemory() returns a pointer to the newly allocated block of memory, or NULL if no 
memory could be allocated.

 8.9.2 The RexxFreeMemory() function

The prototype for RexxFreeMemory() is:

APIRET APIENTRY RexxFreeMemory( 
PVOID MemoryBlock

) ; 

The parameter is an input, and its significance is:

[MemoryBlock]
A void pointer to the block of memory allocated by the interpreter, or allocated by a 
previous call to RexxAllocateMemory().  

RexxFreeMemory() always return 0.
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 8.10 Calling back into running Rexx Code
This section describes the RexxCallBack() function, which allows the application to execute a 
procedure within the running Rexx program.  This function is particularly useful for building a 
Rexx interface to those library applications that operate using a callback mechanism.
A callback mechanism is one where certain events within a particular application can be connected 
to a particular function, so that when a particular event occurs, the connected function is executed. 
Many C library applications use a callback mechanism.

This function is specific to Regina, so caution should be exercised if you plan on making your code
portable to other Rexx interpreters. 

 8.10.1 The RexxCallBack() function

This function is used to execute an internal procedure within the running Rexx script. The 
procedure is executed with the same context as if the procedure were called from within the Rexx 
program as a function call.

APIRET APIENTRY RexxCallBack( 
PSZ ProcedureName,
LONG ArgCount,
PRXSTRING ArgList,
PUSHORT ReturnCode,
PRXSTRING Result 

) ;

Of these parameters, ReturnCode and Result are output-only. The rest of the parameters are input-
only. The significance of the parameters are:

[ProcedureName]
An ASCII NUL terminated string, specifying the name of the internal procedure of 
the running Rexx script to be executed. This internal procedure name must exist or 
this function will return with RX_CB_BADN.

[ArgCount]
The number of parameter strings given to the procedure. This is the number of 
defined Rexx-strings pointed to by the ArgList parameter. The default maximum 
number of arguments that can be passed is 32, but this can be changed by the 
MAX_ARGS_TO_REXXSTART macro in rexx.h.

[ArgList]
Pointer to an array of Rexx-strings, constituting the parameters to this call to Rexx. 
The size of this array is given by the parameter ArgCount. If ArgCount is greater 
than one, the first and last parameters are ArgList[0] and ArgList[ArgCount-1].  If 
ArgCount is 0, the value of  ArgList is irrelevant. 

If the strptr of one of the elements in the array pointed to by ArgList is NULL, that 
means that this parameter is empty (i.e. unspecified, as opposed to a string of zero 
size).

[ReturnCode]
Pointer to a SHORT integer where the return code from the called ProcedureName
is stored, provided that the returned value is numeric, and within the range  -(2**15) 
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to 2**15-1. I don't know what happens to ReturnCode if either of these conditions 
is not satisfied. It probably becomes undefined, which means that it is totally useless 
since the program  has to inspect the return string in order to determine whether 
ReturnCode is valid.
Regina allows the value of this parameter to be NULL if the user is not interested in 
it.

[Result]
Points to a Rexx string into which the result string from the called ProcedureName
is written.  The caller may or may not let the strptr field be supplied.  If supplied (i.e.
it is non-NULL), that area will be used, else a new area will be allocated. If the 
supplied area is used, its size is supposed to be given by the strlength field. If the 
size if not sufficient, a new area will be allocated, by RexxAllocateMemory(), and 
the caller must see to that it is properly de-allocated using  RexxFreeMemory(). 
Regina allows the value of this parameter to be NULL if the user is not interested in 
it.

Note that the ArgCount parameter need not be the same as the ARG() built-in function would 
return. Differences will occur if the last entries in ArgList are null strings.

The arguments passed to the ProcedureName will be passed individually. i.e. the PARSE ARG 
command in the ProcedureName must use commas to separate the arguments.

The valid return values from RexxCallBack() are:

[Negative]
indicates that a syntax error occurred during interpretation. In general, you can 
expect the error value to have the same absolute value as the Rexx syntax error (but 
opposite signs, of course).

[Zero, or RX_CB_OK]
indicates that the interpreter finished executing the procedure without errors.

[Positive]
indicates probably that some problem occurred, that made it impossible to execute 
the procedure, e.g. a bad parameter value.  The values that can be return are:
RX_CB_BADP bad parameters
RX_CB_NOTSTARTED there is no running Rexx program
RX_CB_TOOMANYP too many parameters supplied
RX_CB_BADN the ProcedureName does not exist

During the course of an execution of  RexxCallBack(), subcommand handlers and exit handlers 
might be called. These may call any function in the application interface, including another 
invocation of RexxCallBack().
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 9 Implementation Limits
This chapter lists the implementation limits required by the Rexx standard. All implementations are
supposed to support at least these limits.

 9.1 Why Use Limits?
Why use implementation limits at all? Often, a program (ab)uses a feature in a language to an extent
that the implementor did not foresee. Suppose an implementor decides that variable names can not 
be longer than 64 bytes. Sooner or later, a programmer gets the idea of using very long variable 
names to encode special information in the name; maybe as the output of a machine generated 
program. The result will be a program that works only for some interpreters or only for some 
problems.

By introducing implementation limits, Rexx tells the implementors to what extent a implementation
is required to support certain features, and simultaneously it tells the programmers how much 
functionality they can assume is present.

Note that these limited are required minimums for what an implementation must allow. An 
interpreter is not supposed to enforce these limits unless there is a good reason to.

 9.2 What Limits to Choose?
A limit must not be perceived as an absolute limit, the implementer is free to increase the limit. To 
some extent, the implementer may also decrease the limit, in which case this must be properly 
documented as a non-standard feature. Also, the reason for this should be noted in the 
documentation.

Many interpreters are likely to have "memory" as an implementation limit, meaning that they will 
allow any size as long as there is enough memory left. Actually, this is equivalent to no limit, since 
running out of memory is an error with limit enforcing interpreters as well. Some interpreters let the
user set the limits, often controlled through the OPTIONS instruction.

For computers, limit choices are likely to be powers of two, like 256, 1024, 8192, etc. However, the 
Rexx language takes the side of the user, and defines the limits in units which looks as more 
"sensible" to computer non-experts: most of the limits in Rexx are numbers like 250, 500, 1000, 
etc.

 9.3 Required Limits
These are the implementation minimums defined by Rexx:

[Binary strings]
Must be able to hold at least 50 characters after packing. That means that the unpacked size 
might be at least 400 characters, plus embedded white space.

[Elapse time clock]
Must be able to run for at least 10**10-1 seconds, which is approximately 31.6 years. In 
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general, this is really a big overkill, since virtually no program will run for a such a period. 
Actually, few computers will be operational for such a period.

[Hexadecimal strings]
Must be able to hold at least 50 characters after packing. This means that the unpacked size 
might be at least 100 characters, plus embedded white space.

[Literal strings]
Must be able to hold at least 100 characters. Note that a double occurrence of the quote 
character (the same character used to delimit the string) in a literal string counts as a single 
character. In particular, it does not count as two, nor does it start a new string.

[Nesting of comments]
Must be possible to in at least 10 levels. What happens then is not really defined. Maybe one
of the syntax errors is issued, but none is obvious for this use. Another, more dangerous way
of handling this situation would be to ignore new start-of-comments designators when on 
level 10. This could, under certain circumstances, lead to running of code that is actually 
commented out. However, most interpreter are likely to support nesting of comments to an 
arbitrary level.

[The Number of Parameters]
In calls must be supported up to at least 10 parameters. Most implementations support 
somewhat more than that, but quite a few enforce some sort of upper limit. For the built-in 
function, this may be a problem only for MIN() and MAX().

[Significant digits]
Must be supported to at least 9 decimal digits. Also, if an implementation supports floating 
point numbers, it should allow exponents up to 9 decimal digits. An implementation is 
allowed to operate with different limits for the number of significant digits and the numbers 
of digits in exponents.

[Subroutine levels]
May be nested to a total of 100 levels, which counts both internal and external functions, but
probably not built-in functions. You may actually trip in this limit if you are using recursive 
solution for large problems. Also, some tail-recursive approaches may crash in this limit.

[Symbol (name) length]
Can be at least 50 characters. This is the name of the symbol, not the length of the value if it 
names a variable. Nor is it the name of the variable after tail substitution. In other words, it 
is the symbol as it occurs in the source code. Note that this applies not only to simple 
symbols, but also compound symbols and constant symbols. Consequently, you can not 
write numbers of more than 50 digits in the source code, even if NUMERIC DIGITS is set 
high.

[Variable name length]
Of at least 50 characters. This is the name of a variable (which may or may not be set) after 
tail substitution.

 9.4 Older (Obsolete) Limits
First edition of TRL1 contained some additional limits, which have been relaxed in the second 
edition in order to make implementation possible for a large set of computers. These limits are:

[Clock granularity]
Was defined to be at least of a millisecond.

Far from all computers provide this granularity, so the requirement have been relaxed. The 
current requirement is a granularity of at least one second, although a millisecond 
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granularity is advised.

 9.5 What the Standard does not Say
An implementation might enforce a certain limit even though one is not specified in the standard. 
This section tries to list most of the places where this might be the case:

[The stack]
(Also called: the external data queue) is not formally defined as a concept of the language 
itself, but a concept to which the Rexx language has an interface. Several limits might apply
to the stack, in particular the maximum length of a line in the stack and the maximum 
number of lines the stack can hold at once.

There might also be also be other limits related to the stack, like a maximum number of 
buffers or a maximum number of different stack.  These concepts are not referred to by 
Rexx, but the programmer ought to be aware of them.

[Files]
May have several limits not specified by the definition of Rexx, e.g. the number of files 
simultaneously open, the maximum size of a file, and the length and syntax of file names. 
Some of these limits are enforced by the operating system rather than an implementation.  
The programmer should be particularly aware of the maximum number of simultaneously 
open files, since Rexx does not have a standard construct for closing files.

[Expression nesting]
Can in some interpreters only be performed to a certain level. No explicit minimum limit has
been put forth, so take care in complex expressions, in particular machine generated 
expressions.

[Environment name length]
May have some restrictions, depending on your operating system.  There is not defined any 
limit, but there exists an error message for use with too long environment names.

[Clause length]
May have an upper limit. There is defined an error message "Clause too long" which is 
supposed to be issued if a clause exceeds a particular implementation dependent size. Note 
that a "clause" does not mean a "line" in this context; a line can contain multiple clauses.

[Source line length]
Might have an upper limit. This is not the same as a "clause" (see above). Typically, the 
source line limit will be much larger than the clause limit. The source line limit ought to be 
as large as the string limit.

[Stack operations]
Might be limited by several limits; first there is the number of strings in the stack, then there
is the maximum length of each string, and at last there might be restrictions on the character 
set allowed in strings in the stack. Typically, the stack will be able to hold any character. It 
will either have "memory" as the limit for the number of string and the length of each string,
or it might have a fixed amount of memory set aside for stack strings.  Some 
implementations also set a maximum length of stack strings, often 2*8 or 2*16.

 9.6 What an Implementation is Allowed to "Ignore"
In order to make the Rexx language implementable on as many machines as possible, the Rexx 
standard allow implementation to ignore certain features. The existence of these features are 
recommended, but not required. These features are:
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[Floating point numbers]
Are not required; integers will suffice. If floating points are not supported, numbers can 
have not fractional or exponential part. And the normal division will not be available, i.e. the
operator "/" will not be present. Use integer division instead.

[File operations]
Are defined in Rexx, but an implementation seems to be allowed to differ in just about any 
file operation feature.

 9.7 Limits in Regina
Regina tries not to enforce any limits. Wherever possible, "memory" is the limit, at the cost of 
some CPU whenever internal data structures must be expanded if their initial size were too small.  
Note that Regina will only increase the internal areas, not decrease them afterwards. The rationale 
is that if you happen to need a large internal area once, you may need it later in the same program 
too.

In particular, Regina has the following limits:

Binary Strings source line length

Clock Granularity 0.001-1 second (note 2)

Elapsed Time clock until ca. 2038 (note 1)

Named Queues 100

Hexadecimal Strings source line length

Interpretable String source line length

Literal String Length source line length

Nesting of Comments memory

Parameters memory

Significant Digits source line length

Source Line Length 100,000 (note 3)

Subroutine Levels memory

Symbol Length source line length

Variable Name Length source line length

Notes:

 1. Regina uses the Unix-derived call time() for the elapsed time (and time in general). This 
is a function which returns the number of seconds since January 1st 1970. According to the ANSI C 
standard, in which Regina is written, this is a number which will at least hold the number 2**31-1. 
Therefore, these machines will be able to work until about 2038, and Regina will satisfy the 
requirement of the elapse time clock until 2006. By then, computers will hopefully be 64 bit.

Unfortunately, the time() C function call only returns whole seconds, so Regina is forced to use 
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other (less standardised) calls to get a finer granularity. However, most of what is said about 
time() applies for these too.

 2.  The clock granularity is a bit of a problem to define. All systems can be trusted to have a 
granularity of about 1 second. Except from that, it's very difficult to say anything more specific for 
certain. Most systems allows alternative ways to retrieve the time, giving a more accurate result. 
Wherever these alternatives are available, Regina will try to use them. If everything else fails, 
Regina will use 1 second granularity.

For most machines, the granularity are in the range of a few milliseconds. Some typical examples 
are: 20 ms for Sun3, 4 ms for Decstations 3100, and 10 ms for SGI Indigo. Since this is a hardware 
restriction, this is the best measure anyone can get for these machines.

 3. The line length limit is defined when Regina is built.  Due to the nature of implementation 
of the source parser, it is not possible to make this a dynamically increase as the source line is read. 
If you need a line length longer than the current default value, you need to make two changes:
 3.1. change YY_BUF_LEN in lexsrc.c
 3.2. change BUFFERSIZE in rexx.h
See the notes in rexx.h that explain that YY_BUF_LEN must be larger than BUFFERSIZE 
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 10 Regina Features and Implementation
This chapter lists features of Regina and specific implementation capabilities.

 10.1 Regina Restricted Mode
Many language interpreters provide a mechanism where code executed within that interpreter is 
limited to affecting the environment of the interpreter and cannot change the external environment 
in which the interpreter runs.

Restricted mode is used in situations where you need to guarantee that the author of a Rexx 
program is unable to affect the user's environment.

Situations where a restricted mode is applicable include, using Regina as a database procedural 
language, or as a language plug-in for a Web browser.

Features of Regina that are disabled in restricted mode are:

•  LINEOUT, CHAROUT, POPEN, RXFUNCADD BIFs

•  "OPEN WRITE", "OPEN BOTH" subcommands of STREAM BIF

•  The "built-in" environments eg. SYSTEM, CMD or PATH of ADDRESS command

•  Setting the value of a variable in the external environment with  VALUE BIF.

•  Calling external functions

To run Regina in restricted mode, you can start the Regina interpreter from the command line with
the '-r' switch, or when using the Rexx SAA API, or-ing RXRESTRICTED to the CallType 
parameter of RexxStart() function.

 10.2 Native Language Support
Regina provides native language support in the following ways:

• Error messages can be displayed in a user-selectable native language.

• Locale support for whitespace and character translations.

 10.2.1 Error Messages

All native language error messages are contained in binary files (*.mtb) that are built with the 
Regina executables from source files (*.mts).

The mechanism Regina uses to determine what native language to use to display error messages 
depends on the operating system.

On EPOC32, the language is supplied when installing; the selected language is contained in 
default.mtb.  On all other platforms, Regina uses environment variables if you want to use a 
language other than English. 

The English language messages are built into the interpreter for two reasons:

1. to satisfy the ANSI requirement that error messages can be obtained in English using the 
ERRORTEXT BIF and specifying a value of 'S' for argument 2.
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2. used as a fallback position when no native language support is available

 10.2.2 Locale Support

Locale support is very limited in Regina currently. There is no ANSI specification about it and care 
has been taken to avoid unexpected behaviour for multi-language scripts. The basic intention of the 
support was the ability to handle special characters in some western locales or on some systems. 
Non-breakable spaces are part of nearly every character set, but they are hard to implement in Rexx
programs because of the missing information about the runtime character set when writing the 
program. Another typical problem came from extra characters in the character sets which allow the 
translation in some cases. This problem is unsolvable in advance, because some glyphs are 
characters in one language and they are symbols in other languages. These problems can be solved 
at runtime only with the knowledge of the country and language.

Regina implements some code which is executed once when the interpreter starts up. This code 
evaluates the command line parameter or the environment variables and extracts the information 
about the character set. Note that this operation is not done on a per-thread basis and it is done 
before any other operation happens. So no change can be done once a program has been loaded into
memory and parsed. The use of ADDRESS REXX is recommended for cases where a different 
character set is required for a called program.

Affected operations of the locale support are:

• string comparison if options STRICT_ANSI and STRICT_WHITESPACE_COMPARISON are 
not set.

• upper-case translation of variable names, see VALUE BIF or the API functions.
• white space delimiter detection and elimination at word boundaries or number boundaries at all 

possible places including cases of reading Rexx programs and processing PARSE operations.
• CASELESS translation in PARSE operations.
• case translation of the builtin functions TRANSLATE, LOWER, UPPER and the instruction 
UPPER

• DATATYPE BIF results.
• file name case translation when searching external procedures or when using the API for loading 

external libraries.

 10.2.3 Using Native Language Support

To specify a native language, up to 2 environment variables are used.

REGINA_LANG environment variable is set to an ISO 639, 2 character language abbreviation as 
defined in the following table for error messages, optionally followed by a comma and the locale.
The locale is explained in Section 1; “Executing Rexx programs With Regina”. The value given at 
the command line by the parameter "-l" takes precedence if it is given at all, even if the empty 
string is used. 
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REGINA_LANG Language Translation By

de German Floran Grosse-Coosmann

es Spanish Pablo Garcia-Abia

no Norwegian Vidar Tysse

pl Polish Bartosz Kozlowski

pt Portuguese Susana and Brian Carpenter, 
Josie Medeiros

sv Swedish Jan-Erik Lärka

tr Turkish Haluk Polat

  (to get your name in this table, contact the maintainer with the language you wish to support)

If REGINA_LANG is not set, the default is en. The case of the value is irrelevant; EN is the same 
as en.

REGINA_LANG_DIR is required if Regina does not know where the language files will be at 
runtime.

Any  binary distribution that includes an installation routine; RPM, deb, Windows NSIS or 
EPOC32, will set the location of the .mtb files automatically.  Similarly building and installing 
Regina on Unix-like platforms using configure;make install combination will also set the location 
automatically.  All other platforms will require this environment variable to bet set manually.

 10.3 Rexx and Regina binaries: Why?
TODO: static library, dynamic library and rxfuncadd(). 

Cannot use rxfuncadd() in a static library to load an external function package as the dynamic 
library that is loaded with the external function package uses the RexxRegisterFunctionDll that the 
shared library is linked with; this is the one in libregina.so and it updates the internal table of 
external functions in its address space, so the internal table of external functions in libregina.a (or 
rexx binary) will not contain the pointers.
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 11 Appendixes

 11.1 Definitions
In order to make the definitions more readable, but still have a rigid definition of the terms, some 
extra comments have been added to some of the definitions. These comments are enclosed in square
brackets.

Argument is an expression supplied to a function or subroutine, and it provides data on which the 
call can work on.

Assignment is a clause in which second token is the equal sign. [Note that the statements "a==b" 
and "3=4" are an (invalid) assignment, not an expression. The type of the first token is irrelevant; if
the second token is the equal sign, then the clause is assumed to be an assignment.]

Blanks are characters which glyphs are empty space, either vertically or horizontally. A blank is not 
a token (but may sometimes be embedded in tokens), but acts as token separators. [Exactly which 
characters are considered blanks will differ between operating systems and implementations, but the
<space> character is always a blank.  The <tab> character is also often considered a blank.  Other 
characters considered blank might be the end-of-line <eol>), vertical tab (<vt>), and formfeed 
(<ff>). See specific documentation for each interpreter for more information.]

Buffer

Caller routine

Character is a piece of information about a mapping from a storage unit (normally a byte) and a 
glyph. Often used as "the meaning of the glyph mapped to a particular storage unit". [The glyph "A"
is the same in EBCDIC and ASCII, but the character "A" (i.e. the mapping from glyph to storage 
unit) differs.]

Character string is an finite, ordered, and possibly empty set of characters.

Clause is a non-empty collection of tokens in a Rexx script. The tokens making up a clause are all 
the consecutive tokens delimited by two consecutive clause delimiters. [Clauses are further divided 
into null clauses, instructions, assignments, and commands.]

Clause delimiter is a non-empty sequence of elements of a subset of tokens, normally the linefeed 
and the semicolon. Also the start and end of a Rexx script are considered clause delimiters. Also 
colon is a clause separator, but it is only valid after a label.

Command

Compound variable is a variable which name has at least one "." character that isn't positioned at 
the end of the name.

Current environment is a particular environment to which commands is routed if no explicit 
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environment is specified for their routing.

Current procedure level is the procedure level in effect at a certain point during execution.

Daemon

Decimal digit

Device driver

Digit is a single character having a numeric value associate with its glyph.

Empty string

Environment is a interface to which Rexx can route commands and afterwards retrieve status 
information like return values.

Evaluation is the process applied to an expression in order to derive a character string.

Exposing is the binding of a variable in the current procedure level to the variable having the same 
name in the caller routine. This binding will be in effect for as long as the current procedure level is
active.

Exponential form is a way of writing particularly large or small numbers in a fashion that makes 
them more readable. The number is divided into a mantissa and an exponent of base 10.

Expression is a non-empty sequence of tokens, for which there exists syntactic restrictions on 
which tokens can be members, and the order in which the tokens can occur. [Typically, an 
expression may consist of literal strings or symbols, connected by concatenation and operators.]

External data queue see "stack".

External subroutine is a script of Rexx code, which is executed as a response to a subroutine or 
function call that is neither internal nor built-in.

FIFO

Glyph is an atomic element of text, having a meaning and an appearance; like a letter, a digit, a 
punctuation mark, etc.

Hex is used as a general abbreviation for term hexadecimal when used in compound words like hex 
digit and hex string.

Hexadecimal digit is a digit in the number system having a base of 16. The first ten digits are 
identical with the decimal digits (0-9), while for the last six digits, the first six letters of the Latin 
alphabet (A-F) are used.

Hexadecimal string is a character string that consists only of the hexadecimal digits, and with 
optional whitespace to divide the hexadecimal digits into groups. Leading or trailing whitespace is 
illegal.  All groups except the first must consist of an even number of digits. If the first group have 
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an odd number of digits, an extra leading zero is implied under some circumstances.

Instruction is a clause that is recognized by the fact that the first token is a special keyword, and 
that the clause is not an assignment or label. Instructions typically are well-defined Rexx language 
components, such as loops and function calls.

Interactive trace is a trace mode, where the interpreter halts execution between each clause, and 
offer the user the possibility to specify arbitrary Rexx statements to be executed before the 
execution continues.

Label

LIFO

Line continuation is the comma; ',' character.  When it is the last token on a line, then the end of 
clause implied by the end of line is ignored and the clause continues on the next line.

Literal name is a name which will always be interpreted as a constant, i.e. that no variable 
substitution will take place.

Literal string is a token in a Rexx script, that basically is surrounded by quotation marks, in order 
to make a character string containing the same characters as the literal string.

Keyword is a element from finite set of symbols.

Main level

Main program

Name space is a collection of named variables. In general, the expression is used when referring to 
the set of variables available to the program at some point during interpretation.

Nullstring is a character string having the length zero, i.e. an empty character string. [Note the 
difference from the undefined string.]

Operating system

Parameters

Parsing

Procedure level

Program is a collection of Rexx code, which may be zero or more scripts, or other repositories of 
Rexx code. However, a program must contain a all the code to be executed.

Queue see "external data queue" or "stack".

Routine is a unit during run-time, which is a procedural level.  Certain settings are saved across 
routines. One routine (the caller routine) can be temporarily suspended while another routine is 
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executed (the called routine). With such nesting, the called routine must be terminated before 
execution of the caller routine can be resumed. Normally, the CALL instruction or a function call is 
used to do this. Note that the main level of a Rexx script is also a routine.

Script is a single file containing Rexx code.

Space separated

Stack

Statement is a clause having in general some action, i.e. a clause other than a null clause. 
[Assignments, commands and instructions are statements.]

Stem collection

Stem variable

Strictly order

Subkeyword is a keyword, but the prefix "sub" stresses the fact that a symbol is a keyword only in 
certain contexts [e.g. inside a particular instruction].

Subroutine is a routine which has been invoked from another Rexx routine; i.e. it can not be the 
"main" program of a Rexx script.

Symbol

Symbol table

Tail substitution

Term

Token

Token separator

Uninitialized

Variable name

Variable symbol

Whitespace One or several consecutive blank characters.

hex literal

norm. hex string

bin {digit,string,literal}
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norm. bin string

packed char string

Character strings is the only type of data available in Rexx, but to some extent there are 'subtypes' 
of character strings; character strings which contents has certain format. These special formats is 
discussed below.
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 11.3 GNU Free Documentation License

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000  Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the 
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or 
without modifying it, either commercially or noncommercially.  Secondarily, this License preserves 
for the author and publisher a way to get credit for their work, while not being considered 
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must 
themselves be free in the same sense.  It complements the GNU General Public License, which is a 
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free 
software needs free documentation: a free program should come with manuals providing the same 
freedoms that the software does.  But this License is not limited to software manuals; it can be used 
for any textual work, regardless of subject matter or whether it is published as a printed book.  We 
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright 
holder saying it can be distributed under the terms of this License.  The "Document", below, refers 
to any such manual or work.  Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals 
exclusively with the relationship of the publishers or authors of the Document to the Document's 
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject.  (For example, if the Document is in part a textbook of mathematics, a Secondary Section 
may not explain any mathematics.)  The relationship could be a matter of historical connection with 
the subject or with related matters, or of legal, commercial, philosophical, ethical or political 
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those 
of Invariant Sections, in the notice that says that the Document is released under this License.
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The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format 
whose specification is available to the general public, whose contents can be viewed and edited 
directly and straightforwardly with generic text editors or (for images composed of pixels) generic 
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text 
formatters.  A copy made in an otherwise Transparent file format whose markup has been designed 
to thwart or discourage subsequent modification by readers is not Transparent.  A copy that is not 
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo 
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification.  Opaque formats include PostScript, 
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are 
needed to hold, legibly, the material this License requires to appear in the title page.  For works in 
formats which do not have any title page as such, "Title Page" means the text near the most 
prominent appearance of the work's title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or 
noncommercially, provided that this License, the copyright notices, and the license notice saying 
this License applies to the Document are reproduced in all copies, and that you add no other 
conditions whatsoever to those of this License.  You may not use technical measures to obstruct or 
control the reading or further copying of the copies you make or distribute.  However, you may 
accept compensation in exchange for copies.  If you distribute a large enough number of copies you 
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display 
copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's 
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and 
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the 
back cover.  Both covers must also clearly and legibly identify you as the publisher of these copies. 
The front cover must present the full title with all words of the title equally prominent and visible.  
You may add other material on the covers in addition. 

Copying with changes limited to the covers, as long as they preserve the title of the Document and 
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones 
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must 
either include a machine-readable Transparent copy along with each Opaque copy, or state in or 
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with each Opaque copy a publicly-accessible computer-network location containing a complete 
Transparent copy of the Document, free of added material, which the general network-using public 
has access to download anonymously at no charge using public-standard network protocols.  If you 
use the latter option, you must take reasonably prudent steps, when you begin distribution of 
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the 
stated location until at least one year after the last time you distribute an Opaque copy (directly or 
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before 
redistributing any large number of copies, to give them a chance to provide you with an updated 
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the 
Modified Version filling the role of the Document, thus licensing distribution and modification of 
the Modified Version to whoever possesses a copy of it.  In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and 
from those of previous versions (which should, if there were any, be listed in the History section of 
the Document).  You may use the same title as a previous version if the original publisher of that 
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of 
the modifications in the Modified Version, together with at least five of the principal authors of the  
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright 
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to 
use the Modified Version under the terms of this License, in the form shown in the Addendum 
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given 
in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, 
year, new authors, and publisher of the Modified Version as given on the Title Page.  If there is no 
section entitled "History" in the Document, create one stating the title, year, authors, and publisher 
of the Document as given on its Title Page, then add an item describing the Modified Version as 
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent 
copy of the Document, and likewise the network locations given in the Document for previous 
versions it was based on.  These may be placed in the "History" section. You may omit a network 
location for a work that was published at least four years before the Document itself, or if the 
original publisher of the version it refers to gives permission.
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K. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and 
preserve in the section all the substance and tone of each of the contributor acknowledgements 
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.  
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements".  Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant 
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary 
Sections and contain no material copied from the Document, you may at your option designate 
some or all of these sections as invariant.  To do this, add their titles to the list of Invariant Sections 
in the Modified Version's license notice. 

These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of 
your Modified Version by various parties--for example, statements of peer review or that the text 
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words 
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.  Only one 
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through 
arrangements made by) any one entity.  If the Document already includes a cover text for the same 
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the 
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their 
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms 
defined in section 4 above for modified versions, provided that you include in the combination all 
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant 
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant 
Sections may be replaced with a single copy.  If there are multiple Invariant Sections with the same 
name but different contents, make the title of each such section unique by adding at the end of it, in 
parentheses, the name of the original author or publisher of that section if known, or else a unique 
number.

Make the same adjustment to the section titles in the list of Invariant Sections in the license notice 
of the combined work.

In the combination, you must combine any sections entitled "History" in the various original 
documents, forming one section entitled "History"; likewise combine any sections entitled 
"Acknowledgements", and any sections entitled "Dedications".  You must delete all sections entitled
"Endorsements."
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6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this 
License, and replace the individual copies of this License in the various documents with a single 
copy that is included in the collection, provided that you follow the rules of this License for 
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this 
License, provided you insert a copy of this License into the extracted document, and follow this 
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a 
Modified Version of the Document, provided no compilation copyright is claimed for the 
compilation.  Such a compilation is called an "aggregate", and this License does not apply to the 
other self-contained works thus compiled with the Document, on account of their being thus 
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the 
Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be 
placed on covers that surround only the Document within the aggregate.

Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4.

Replacing Invariant Sections with translations requires special permission from their copyright 
holders, but you may include translations of some or all Invariant Sections in addition to the 
original versions of these Invariant Sections.  You may include a translation of this License 
provided that you also include the original English version of this License.  In case of a 
disagreement between the translation and the original English version of this License, the original 
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for 
under this License.  Any other attempt to copy, modify, sublicense or distribute the Document is 
void, and will automatically terminate your rights under this License.  However, parties who have 
received copies, or rights, from you under this License will not have their licenses terminated so 
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation 
License from time to time.  Such new versions will be similar in spirit to the present version, but 
may differ in detail to address new problems or concerns.  See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License "or any later version" applies to it, you have the 
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option of following the terms and conditions either of that specified version or of any later version 
that has been published (not as a draft) by the Free Software Foundation.  If the Document does not 
specify a version number of this License, you may choose any version ever published (not as a 
draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document 
and put the following copyright and license notices just after the title page:

      Copyright (c)  YEAR  YOUR NAME.

      Permission is granted to copy, distribute and/or modify this document under the terms of the 
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software 
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts 
being LIST, and with the Back-Cover Texts being LIST.

      A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones 
are invariant.  If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-
Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these 
examples in parallel under your choice of free software license, such as the GNU General Public 
License, to permit their use in free software.
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