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On Navigation 
In the age of social media,  it’s tempting to evaluate our relation-
ships based on whether or not the people we know follow us on-
line and like or share our posts. Yet evidence shows that the 
brain has a sophisticated social apparatus of its own that relies 
on maplike coordinates to track our communal connections.

Research on the brain’s GPS dates back to the 1970s, but the 
role of so-called place cells and grid cells has become clearer in 
recent years. In our January 2016 issue we ran a cover story by 
Nobel Prize winners May-Britt Moser and Edvard Moser that de-
scribed how these cells allow us to navigate the world by deter-
mining our location and the distance and direction to other lo-
cations. The tale continues in this month’s lead article, by neuro-
scientists Matthew Schafer and Daniela Schiller, which reveals 
how mental maps apply not only to physical space but also to 
complex social hierarchies and dynamics. Our ability to con-
struct these abstract models may help explain why humans are 
such adaptive learners, the authors write. Follow your innate 
cognitive compass to “The Brain’s Social Road Maps,” on page 30.

Because we’ve largely figured out how humans decide whether 
to go this way or that, you may be surprised to learn that we still 
don’t completely understand why airplanes go up and down. As 
science writer Ed Regis explains on page 44, “there is actually no 
agreement on what generates the aerodynamic force known as lift.” 
Don’t worry, aviation engineers have all the math they need to en-
sure that we can travel safely aloft from here to there, but we lack 
a nontechnical, commonsense explanation of the principles of 

flight. Physics teachers point to Bernoulli’s theorem and Newton’s 
third law of motion, yet each fails to give a comprehensive account 
of the dynamics at play. We still don’t have a complete and satisfy-
ing answer, Regis notes, but computational fluid dynamics simu-
lations are helping to fill in the blanks in our understanding. 

Elsewhere we have a coincidental but illuminating focus on hy-
drogen. In “First Molecule in the Universe” ( page 58 ), chemist 
Ryan C. Fortenberry tells of scientists at last finding in the depths 
of space a compound, HeH+, that they believe begot the chemical 
world we know today. Without this first bond between helium and 
hydrogen, H2

+ and then neutral H2 would never have formed. And 
it so happens that H2 is back in the renewable energy game. De-
spite disappointing ballyhoo about the hydrogen economy in the 
early aughts, there is fresh innovation and investment, journalist 
Peter Fairley writes in the “The H2 Solution” ( page 36 ). 

Rounding out the issue, a special report, “AI and Digital Health” 
(page S1), produced independently with support from F.  Hoff-
mann-La Roche Ltd., describes how researchers and doctors are 
improving health care with advanced algorithms. Alas, finding peo-
ple with both biomedical and computational know-how is hard. 

Finally, as I announced last month, we’re celebrating our 175th 
anniversary year with a series of content spotlights over the 
course of 2020. We revamped our usual Recommended (page 67) 
to call attention to a lovely new catalog of the works of artist and 
inventor Rufus Porter, who established  Scientific American  in 
1845. If you are in the Northeast, you can view his portraits and 
illustrations on display at the related exhibition, “Rufus Porter’s 
Curious World: Art and Invention in America, 1815–1860,” open 
until May 31 at the Bowdoin College Museum of Art in Maine. 

Illustration by Nick Higgins
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LETTERS 
editors@sciam.com

PTEROSAUR HEAD 
“Monsters of the Mesozoic Skies,” Mi-
chael  B. Habib’s article on pterosaurs, 
gives the best discussion of their likely 
flight mechanisms I have ever read! Some 
birds with large heads and bills, such as 
pelicans, fly with their neck retracted over 
their back so that the weight of the head 
and bill are close to the shoulders (and 
thus the center of lift). Would such a pos-
ture be a way for pterosaurs to maintain 
better balance during flight?

Stewart Ware   
College of William and Mary

What was the advantage of pterosaurs hav-
ing such large heads and long necks? 
Habib describes how flight may have pro-
ceeded from a leg vault to a wing catapult 
to launch. It appears to me that an impor-
tant additional motion was employed: a 
sudden upward jerk of the head during 
launch. This impulse would have utilized 
the strong neck muscles and long neck to 
snap the large head upward, providing 
vertical momentum. Were the utility of 
this impulse critically important for ptero-
saurs to launch, it would help explain the 
evolutionary advantages of some of their 
ubiquitous morphology.

Gordon Sproul  via e-mail

As pilots know, an aircraft’s vertical sta-
bilizer and its associated rudder are es-
sential for controlled flight. I wonder if 

the aerodynamic consequences of the 
large crested heads of these creatures 
has been investigated.

Wallace Magathan  Miami

HABIB REPLIES:  I want to thank readers 
for their fantastic engagement with a sub-
ject that I will continue to probe at the Di-
nosaur Institute of the Natural History 
Museum of Los Angeles County. Regard-
ing Ware’s thoughts: it turns out that 
ptero saurs’ necks were not very birdlike. 
Rather than having numerous, small, 
highly mobile neck vertebrae, they tended 
to have a handful of large ones with fairly 
average mobility. In the longest-necked 
pterosaurs, the neck vertebrae were actu-
ally interlocking, making the neck quite 
stiff. As a result, there was no way for them 
to arrange it in a classic birdlike S curve. 

In response to Sproul: The head and 
neck might have been raised quickly dur-
ing launch to help give a bit more rise to 
the center of mass. Pterosaurs could also 
have moved their head and neck in flight 
to quickly change the center of mass and 
thereby improve agility. 

To answer Magathan’s question: The 
crests do indeed look like vertical stabi-
lizers or rudders in some species. But fly-
ing animals do not use (or need) those 
mechanisms because they employ a dif-
ferent distribution of lift on their wings 
as compared with aircraft. 

RESULTS THAT BIND 
In “A Significant Problem,” Lydia Den-
worth presents some of the major con-
troversies regarding the use and misuse 
of null hypothesis significance testing 
(NHST) in published medical and behav-
ioral science studies. She also mentions a 
special issue of the  American Statistician 
 concerned with these problems, and I hap-
pen to be one of the statisticians who con-

tributed to it. A big part of the problem is 
science journals’ widely cited publication 
bias, whereby reports showing positive ef-
fects in support of hypotheses receive pref-
erence. Given this bias, is it any wonder 
that there is a “replication crisis”? 

Publication bias can be largely circum-
vented by preregistering studies judged 
methodologically sound with journals be-
fore their results are in. Yet an almost 
equally effective and less cumbersome 
method that could be more seamlessly ad-
opted would be results-blind manuscript 
evaluation (RBME), whereby the editor 
distributes only the introduction and 
methods sections to reviewers for a first-
stage provisional decision on publication 
acceptance  before the results are seen.  (The 
Results section would be edited in a sec-
ond stage if the first-stage provisional deci-
sion is for acceptance.) Authors would be 
made fully aware of the RBME policy to 
also reduce any incentive to consciously or 
unconsciously distort results in a more 
positive direction or to fail to report valid 
null findings. Such a procedure bases pub-
lication solely on the judged importance of 
the research question addressed by the 
study and the quality of its methodology, 
not the results. 

Joseph J. Locascio   
Harvard Medical School

STEM SUITABILITY
“Closing the Skills Gap,” by Rick Lazio and 
Harold Ford, Jr. [Forum], is an interesting 
(if incomplete) article arguing for reform 
in education to better serve a need for 
workers in STEM that would have been 
improved if the acronym had been defined 
in the narrative (it stands for science, tech-
nology, engineering and mathematics).

Although I don’t disagree that the edu-
cational system is failing us (particularly 
in minority communities), the authors are 
overlooking another gaping hole: not ev-
eryone is destined to (or interested in) be-
coming a scientist, engineer or mathemati-
cian (or even graduating from college). 
The current system is also sorely lacking in 
encouragement, opportunity and training 
for those who would become, for example, 
plumbers—or enter other fields that are 
well paid, necessary and unlikely to be re-
placed by automation in the near future.

Edward Wills  via e-mail 

October 2019 

 “Given science 
journals’ publication 
bias, is it any wonder 
that there is a 
‘replication crisis’?” 

joseph j. locascio  harvard medical school 
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REVERSING DEATH
After reading Christof Koch’s article on 
reviving the brain after death [“Is Death 
Reversible?”], I was struck by the similari-
ties to the ideas found in Roald Dahl’s 
short story “William and Mary.” It was first 
published in 1959 and describes a very 
similar method of keeping the brain alive 
by connecting the veins and arteries to it 
and running an artificial bloodlike solu-
tion through them. It obviously supports 
the idea that “death” occurs only when the 
brain dies and that the soul is contained 
within the brain. I find it interesting that 
Dahl had very similar ideas about revers-
ing death 60 years ago and wonder if any 
of the researchers involved read the story.

Zoe McNeice  via e-mail

Koch appears to imply that Buddhists are 
reassured by an eternal cycle of reincar-
nation by citing it among other religious 
concepts as a “defense mechanism to deal 
with [the] foreknowledge” of death. But in 
Buddhism, this cycle, termed “samsara,” 
is laden with suffering and not reassuring 
at all. In fact, the journey of Buddhists is 
directed at releasing oneself from it. 

Lee Tucker  Nashville, Tenn.

Koch repeatedly refers to death and lightly 
touches on its possible reversibility. Death 
is primarily defined as the irreversible loss 
of life, but do we know what life is? It is a 
property easy to recognize, difficult to de-
scribe and impossible to create in the labo-
ratory. We suspect it originated in some 
earthly pond many millions of years ago, 
and it is only temporarily housed in all be-
ings. Will science ever be able to restore a 
property whose nature we are unable to 
determine or even rationally discuss? And 
whatever life is, may it also be responsible 
for the push forward of evolution? This 
seems to be another intractable mystery.
Joan Gil  Professor emeritus of pathology,  
Icahn School of Medicine at Mount Sinai

ERRATUM 
“Is Death Reversible?” by Christof Koch, 
should have described modern fields such 
as machine learning as creating an illu-
sion of understanding the “vegetative soul” 
rather than the “sensitive soul.” The vege-
tative soul defines the body’s basic physi-
cal functions.

© 2020 Scientific American © 2020 Scientific American
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SCIENCE AGENDA 
OPINION AND ANALYSIS FROM  
SCIENTIFIC AMERICAN ’ S BOARD OF EDITORS

At the start  of nearly every doctor’s visit, chances are you will 
be asked to step on a scale and get your weight measured for 
that day’s exam record—and you would be hard-pressed to find 
a person whose physician has not brought up his or her weight 
at some point. But many conversations around weight have be -
come a hindrance, not a help, in the campaign to make people 
healthier. Doctors’ recommendations to drop pounds are still 
ex  tremely common, even though using body size as a one-size-
fits-all proxy for health can obscure the complexity of an indi-
vidual’s particular physiology. 

Higher body masses are associated with increased risk for 
hypertension, diabetes and coronary disease. Many epidemiolog-
ical studies of hundreds of thousands (in some cases, millions) of 
patients have shown that heavier people are at higher risk for 
these illnesses. But the big picture is not the whole picture. Re -
searchers have identified a subset of obese people considered to 
be “metabolically healthy”—meaning they do not exhibit elevat-
ed blood pressure or the diabetes precursor called insulin resis-
tance, for example. Although the numbers vary greatly depend-
ing on the study, the metabolically healthy population could 
comprise anywhere from 6 to 75 percent of obese individuals. 

One intriguing report published in 2016 found that a higher 
body mass index (or BMI, the ratio of weight to height) “only 
moderately increased the risks for diabetes among healthy sub-
jects” and that unhealthy thin people were twice as likely to get 
diabetes as healthy fat people. Clearly, there is more to the equa-
tion than weight. Although the association between excess 
weight and disease is very real, individual experience can vary 
greatly and hinges on personal physiology and behavior.

Despite such findings, doctors routinely recommend dieting 
for weight loss as a means to “treat” poor health indicators such 
as high cholesterol and insomnia in obese patients—an approach 
with an abysmal success rate. Virtually no diet works in the long 
term (diet-peddling companies have weak, if any, data to back up 
their claims of efficacy). The result: 95 to 98 percent of those who 
attempt to lose weight fail, and up to two thirds end up heavier 
than when they began. Spending years trapped in a cycle of losing 
weight, regaining it, then losing it again is associated with poorer 
cardiovascular health outcomes and contributes to hypertension, 
insulin resistance and high cholesterol. It is time that doctors 
ditch the scale-centric health care practice and focus on behaviors 
that have proven positive outcomes for health. Lifestyle changes, 
such as enhancing one’s nutrition by eating fruits, vegetables and 

whole grains, along with increased physical activity and smoking 
cessation, can improve blood pressure, blood lipid levels and insu-
lin sensitivity—often independently of changes in body weight.

Among the more insidious by-products of weight-centric 
health care are the increased stigma and shame experienced by 
the overweight. The well-reported anecdotal experience of innu-
merable fat people is that doctors often prescribe weight loss 
without examining them, running tests or performing other nor-
mal procedures for conditions that thin people would be screened 
for automatically. Research over the past two decades has shown 
that health professionals have negative attitudes toward obese 
people, as the authors of a large review paper wrote in 2013 in 
 Current Obesity Reports.  Not only that but doctors’ appointments 
with fat patients are shorter on average, and physicians routine-
ly use negative words in their medical histories of such people. 

Some refuse to see these patients at all, as the  South Florida 
Sun Sentinel  reported in 2011. Such biased practices keep people 
from regular annual exams and prevent the detection of serious 
underlying conditions. And research suggests that the chronic 
stress of living with the shame of being a heavy person may 
underlie metabolic changes that increase the storage of fat, ele-
vate blood pressure and drive up blood lipid levels.

To practice evidence-based medicine untainted by stigma, 
doctors should stop relying on weight alone as an indicator of 
health and slavishly prescribing weight loss to treat health ail-
ments. Instead practitioners should focus on behavioral chang-
es to improve health outcomes. People of all sizes are entitled 
to  evidence-based protocols that empower them and keep 
them healthy. 

JOIN THE CONVERSATION ONLINE 
Visit Scientific American on Facebook and Twitter  
or send a letter to the editor: editors@sciam.com

Weight Is  
Not Enough 
Scale-focused health care is failing 
patients and increasing stigma and bias 
By the Editors 
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FORUM 
COMMENTARY ON SCIENCE IN  
THE NEWS FROM THE EXPERTS

Illustration by Thomas Fuchs

Andrew Rosenberg  is director of the Center for Science and 
Democracy at the Union of Concerned Scientists.

The U.S. Environmental Protection Agency  has one job: to pro-
tect public health and safety and the environment we live in, 
with the best available science. It is a mission that saves lives. 
But that mission could end if epa administrator Andrew Wheel-
er succeeds in restricting the science that the agency can use.

Wheeler is pushing a new proposed rule—cloaked in the rhet-
oric of “transparency”—that in most cases would effectively bar 
the epa from using a study in its policy making if all of that 
study’s data, computer code and models have not been made 
public. In practice, this eliminates all studies that protect the 
confidential medical information of participants, even though 
such research is vital for understanding the public health im-
pacts of pollution. The rule would make laws such as the Clean 
Air Act harder to fully implement. It sounds like a small change, 
but it has the potential to do enormous damage.

An attempt to add this rule in 2018 was met with widespread 
condemnation from public health experts and the science com-
munity. A supplemental proposal is a new effort by Wheeler to 
abandon science-based protections that have worked effectively 
for decades to deliver cleaner air, cleaner water and healthier 
communities. So what does the rule do in its “clarified” form?

It applies to all the science used by the agency. Initially the new 
rule applied to “dose-response” studies used to quantify the ef-
fects of a pollutant or chemical on human health. But now the epa 
says that all science used by the agency would fall under the same 
constraint, whether it is a survey, an environmental assessment, 
a modeling study or anything else that could help inform policy.

The use of gold-standard studies of health impacts based on 
personal medical data that participants and researchers agreed, 
legally, to keep private would be restricted. And even without 
such restrictions, companies could pick and choose what research 
they show the agency. This could be applied retroactively to stud-
ies published years ago, meaning that as regulations are reconsid-
ered and updated, some of the original scientific basis for existing 
protections may be excluded, inevitably resulting in weaker rules. 

It requires endless, pointless reanalysis. epa scientists already 
critically review the quality and strength of scientific research, 
going above and beyond the rounds of peer review that are stan-
dard in science. But the proposed rule calls for the agency to en-
gage in reanalysis, effectively forcing it to check the math of ev-
ery study to make sure it gets the same answer. It also requires 
an overly broad set of sensitivity studies on all parameters. That 
work is quite time-consuming and impractical. 

It upends the value placed on studies. There are established 
ways to evaluate scientific research: Is it well designed? Are its 
assumptions reasonable? Are sample sizes big enough? Are the 
methods solid? Is the evidence strong enough to point to a con-
clusion, and if so, how does it compare with findings from other 
studies in the field? The supplemental proposal imposes an ar-
bitrary bureaucratic standard unrelated to robustness or merit. 
The weight the evidence received would be based primarily on 
the public availability of raw data.

It is a political change made to achieve political goals. Far from 
a move toward transparency, this rule was designed by political 
staff on the basis of proposals long pushed by lobbyists for the to-
bacco industry and fossil-fuel extractors. The epa’s own scientific 
experts were secondary to the process, and its Science Advisory 
Board was given very little opportunity to review it. Worse, the epa 
administrator can pick and choose when the rule does and does 
not apply—the exact opposite of a transparent or science-based 
process. The epa got nearly 600,000 critical comments on the orig-
inal proposal, including opposition from major scientific so ci e ties, 
public health groups and universities. It largely ignored them. 

This proposal puts a set of handcuffs on the agency, with in-
dustry-linked political appointees holding the key. It will make 
it harder for the epa to protect communities or to hold polluters 
accountable. It is a declaration by Wheeler and his deputies that 
they don’t care about public health. 

JOIN THE CONVERSATION ONLINE 
Visit Scientific American on Facebook and Twitter  
or send a letter to the editor: editors@sciam.com

The EPA Hits 
a New Low 
A proposed rule would threaten,  
not protect, public health 
By Andrew Rosenberg 
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Close-up view of a vacuum chamber 
prototype to help levitate, trap and cool 
strontium atoms for the MAGIS project.

© 2020 Scientific American
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• Drones distinguish living from dead

• A new pathway builds plastic’s 
predecessor from carbon dioxide

• Researchers track the origin of  
a deadly infection

• Flocks of jackdaws transition between 
chaos and order

PHYSIC S 

Giant Atoms 
Room-sized “atom waves” could 
help probe the quantum realm 

Researchers are preparing  to scrutinize 
nature at tiny scales by stretching super-
cooled atoms into room-length waves as 
they drop them down a 100-meter vacuum 
tube. By exploiting the atoms’ wavelike 
properties, the experiment will look for  
ripples in the bizarre quantum realm: 
potential fingerprints of missing dark  
matter and, in future iterations, new fre-
quencies of gravitational waves. 

Collaborators from eight institutions 
have come together to turn an Illinois mine 
shaft into the world’s largest atom inter-
ferometer—the Matter-wave Atomic  
Grad  iometer Interferometric Sensor, or 
MAGIS-100. After finalizing the design,  
the researchers plan to assemble the 
instrument in 2021 and start harnessing 
lasers to expand submicroscopic strontium 
atoms into macroscale “atom waves” soon 
after. “The summer of 2021 is when things 
start to get completely mind-boggling,” 
says Rob Plunkett, principal investigator at 
Fermilab, where MAGIS-100 will reside. 

With public and private funding total-
ing $12.3 million, the project joins a trend  
of precision research bridging the gap 
between single-university “tabletop” ex -
periments and billion-dollar, multidecadal 
undertakings such as the Large Hadron 
Collider and the Laser Interferometer 
Gravitational-wave Observatory (LIGO). 

© 2020 Scientific American © 2020 Scientific American
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To search the vast array of masses and 
qualities dark matter could have, “you 
[also] need to do small scale—you cannot 
put all your eggs in one basket,” says Asim-
ina Arvanitaki, a researcher at the Perime-
ter Institute for Theoretical Physics in 
Ontario, who is not involved in MAGIS. 

MAGIS-100 will measure atoms in free 
fall as they are manipulated by lasers. A 
laser pulse can tickle a single atom in such 
a way that, because of its quantum prop-
erties, it both absorbs and does not absorb 
the laser’s energy—much as Schrödinger’s 
hypothetical cat persists in a mixed state 
of life and death. Quantum-mechanically, 
everything from a photon to a baseball has 
wavelike qualities, although they are usual-
ly imperceptible for larger objects. When 
an atom is properly excited by the MAGIS 
laser, its wavelike nature lets it stretch out 
in space, with the laser-absorbing portion 
racing ahead. 

A 10-meter-tall MAGIS prototype at 
Stanford University, currently one of the 
world’s largest such instruments, has 
already created record-setting atom 
waves more than half a meter long; the 
Fermilab facility should produce waves of 
dozens of feet or more. As the atom waves 
travel down the shaft, a second laser pulse 
will reunite the excited portion of each 
wave with its slower counterpart, and 

researchers will precisely determine the 
acceleration of the falling atom by measur-
ing interference between the two parts of 
the wave. Because the atoms will be in free 
fall throughout the process, tremors from 
earthquakes or passing trucks should have 
little effect on the measurements. 

MAGIS-100 will simultaneously drop a 
million such atom waves along the upper 
and lower sections of the shaft. By check-
ing even more interference patterns—
those between the top and bottom clouds 
of atoms—the apparatus will be able to 
detect minuscule contradictions to the 
known laws of physics down the entire 
football-field distance. Any tiny differences 
in the way the atom waves fall, for instance, 
will reveal the influence of a third party—
such as undiscovered particles present in 
the space they traveled through. “The lon-
ger you watch [the atoms] fall, the more 
accurately you can measure them,” says 
Stanford physicist Jason Hogan, who 
helped to develop the prototype. 

Dark matter, which scientists suspect 
makes up about 80 percent of the matter 
in the universe but which cannot be 
detected by conventional means, could 
cause noticeable effects in this experiment. 
Most hunts have searched for predicted 
heavy objects called weakly interacting 
massive particles (WIMPs), but as these 

relative giants fail to materialize, new 
search parties are mobilizing. 

Amid the crowded field of dark matter 
models, possible ultralight particles—
which Plunkett calls “a whole unexplored 
continent”—are gaining prominence. 
These phantasms could influence familiar 
particles in several ways, according to 
Johns Hopkins University theorist and 
MAGIS collaborator Surjeet Rajendran. 
The MAGIS-100 apparatus should be able 
to spot two resulting behaviors—varia-
tions in fundamental constants and nudges 
from an undiscovered fifth force of nature—
originating from particles perhaps a billion 
trillion times lighter than the electron. The 
setup will be hundreds to thousands of 
times more sensitive to these changes than 
existing instruments. 

Whereas some researchers prefer seek-
ing particles with specific properties pre-
dicted by theory, others want to cast as 
wide a net as technology permits. High-
energy particle colliders have already been 
used to conduct a thorough search of the 
realm of heavy, strongly interacting parti-
cles, yet the Standard Model of physics still 
seems to be missing some crucial pieces. 
“There is a feeling that discoveries in the 
lower masses are lower-hanging fruit,” 
says Gray Rybka, a physicist at the Univer-
sity of Washington, who is not involved 

TECH 

Triage  
Takes Flight 
Machine learning can help 
drones distinguish the living  
from the dead 

In the aftermath  of disasters, drones have 
already been used to map the destruction 
and help rescuers find possible survivors. 
Now a new system could take this to the 
next level, automatically analyzing drone 
footage to determine whether the people 
spotted are still alive. 

“We’re using computer vision, and 
what we’re looking for are very small 
changes that are associated with move-
ment—that rhythmic movement of breath-
ing,” says Javaan Chahl, a sensor systems 

researcher at the University of South Aus-
tralia and senior author of a study describ-
ing the process, published last October in 
 Remote Sensing. 

The system uses machine learning to 
analyze a 30-second video clip of a human 
body, measuring changes in light reflected 
from the part of the chest region where 
motion would be most apparent. Then it 
determines whether shifts in intensity are 
consistent with a live, breathing person. The 
researchers tested the system on footage of 
nine subjects: eight living humans and one 
mannequin with a wig and makeup. 

Test subjects were unobscured, but 
Chahl says the system could also work  
on people partially covered by rubble— 
as long as their torsos are visible. Past 
attempts at identifying vital signs using 
drones measured subtle changes in skin 
color, which can indicate blood flow. But 
those systems have to view exposed skin 

over pulse points, meaning the drones 
must hover much closer. 

The researchers have yet to test their 
system in the field. “This experiment seems 
to work in very controlled conditions, 
where bodies are lying in static poses on the 
ground and drones four to eight meters up 
in the air are performing these visible-light 
video captures,” says Lisa Parks, a media 

Drone footage reveals 
which figures are breathing.

© 2020 Scientific American



February 2020, ScientificAmerican.com 17

with MAGIS. Those who agree, he adds, form 
“a community that I’ve seen grow severalfold 
in size over the last decade.” 

Even without knowing exactly what it  
is looking for, MAGIS will be “expanding  
the reach of current experiments by a lot,” 
Arvanitaki says.

And even if dark matter operates through 
channels invisible to MAGIS-100, the appara-
tus doubles as a pathfinding gravitational-
wave detector. Although MAGIS-100 will not 
be able to detect gravitational waves itself, it 
will test and develop technology for a future 
upgrade—one keen enough to pick up smaller 
spatial disturbances by dropping clouds of 
atom waves one kilometer apart. This setup 
could sense spacetime ripples with frequen-
cies too low for LIGO and too high for the 
future space-based detector LISA (Laser 
Interferometer Space Antenna), such as gravi-
tational waves emanating from black holes 
and neutron stars before collisions; a 
“MAGIS-1000” could offer telescopes 
advanced warnings of upcoming mergers. 

For now, the researchers look forward to 
cutting a new path into the world of ultralight 
dark matter with the MAGIS-100. “We’ve got 
to do the best we can,” says Tim Kovachy,  
a physicist working on the laser system at 
Northwestern University. “There’s a lot of 
motivation to leave no stone unturned.”  
 — Charlie Wood

researcher at the Massachusetts Institute of 
Technology, who studies drones and surveil-
lance but was not involved in the new study.  
In real disaster-recovery situations, Parks notes, 
conditions such as wind, rain, temperature fluc-
tuations and running water could interfere with 
reflected light. Without a more realistic test 
scenario, she says, “I wonder how feasible this 
really would be if rolled out into an actual post-
disaster context.” 

Chahl agrees that the system’s current  
version has limits. “At the moment, the drone 
is . . .  looking for people on the ground, and 
then it looks to see whether they’re alive,” he 
says. “That’s not quite the  Star Trek  life-sign 
scanners that I’ve always wondered about.” 
But now that the basic concept has been 
proved, Chahl hopes to develop it further. 
“What we’d like to do is actually use the life 
signs to detect the people,” he says, “so you 
can make a map of where there’s likely to be 
people and not.”  — Sophie Bushwick 

© 2020 Scientific American
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PSYCHOLOGY 

Trusting Bots 
AI elicits better cooperation 
through deception 

As artificial-intelligence  products steadi-
ly improve at pretending to be human—an 
AI-generated voice that books restaurant 
reservations by phone, for example, or a 
chat bot that answers consumers’ ques-
tions online—people will increasingly be 
put in the unsettling situation of not know-
ing whether they are talking to a machine. 
But the truth may make such products less 
effective: recent research finds a trade-off 
between transparency and cooperation in 
human-computer interactions. 

The study used a simple but nuanced 
game in which paired players make a series 
of simultaneous decisions to cooperate with 
or betray their partner. In the long run, it 
pays for both to keep cooperating—but 
there is always the temptation to defect and 
earn extra points short term, at the part-
ner’s expense. The researchers used an AI 
algorithm that, when posing as a person, 
implemented a strategy that was better 

than people are at getting human partners 
to cooperate. But previous work suggested 
people tend to distrust machines, so the sci-
entists wondered what would happen if the 
bot revealed itself as such. 

The team hoped people playing with  
a known bot would recognize its ability to 
cooperate (without being a pushover) and 
would eventually get past their distrust. 
“Sadly, we failed at this goal,” says Talal 
Rahwan, a computer scientist at New York 
University in Abu Dhabi and a senior author 
on the paper, published last November in 
 Nature Machine Intelligence.  “No matter 
what the algorithm did, people just stuck to 
their prejudice.” A bot playing openly as a 
bot was less likely to elicit cooperation than 
another human, even though its strategy 
was clearly more beneficial to both players. 
(In each mode, the bot played 50 rounds 
against at least 150 individuals.) 

In an additional experiment, players 
were told, “Data suggest that people are 
better off if they treat the bot as if it were  
a human.” It had no effect. 

Virginia Dignum, who leads the Social 
and Ethical Artificial Intelligence group at 
Umeå University in Sweden and was not 
involved in the study, commends the 

researchers for exploring the transparency-
efficacy trade-off, but she would like to see it 
tested beyond the paper’s particular setup. 

The authors say that in the public 
sphere, people should be asked for consent 
to be deceived about a bot’s identity. It 
cannot be on an interaction-by-interaction 
basis, or else the “deception” obviously will 
not work. But blanket permission for occa-
sional deception, even if it can be obtained, 
still raises ethical quandaries. Dignum says 
humans should have the option to know 
after they have interacted with a bot—but 
if she is calling customer service with a 
simple question, she adds, “I just want to 
get my answer.”  — Matthew Hutson

CHEMISTRY

New Path  
to Plastics
A crucial component could come 
from existing carbon sources

Ethylene  is the world’s most popular 
industrial chemical. Consumers and indus-
try demand 150 million tons every year, and 
most of it goes into countless plastic prod-
ucts, from electronics to textiles. To get 
ethylene, energy companies crack hydro-
carbons from natural gas in a process that 
requires a lot of heat and energy, contribut-
ing to climate change–causing emissions. 

Scientists recently made ethylene by 
combining carbon dioxide gas, water  
and organic molecules on the surface  
of a copper catalyst inside an electro-
lyzer—a device that uses electricity to 
drive a chemical reaction. The process, 
described last November online in  Nature, 
 could point the way toward using carbon 
dioxide as feedstock for chemicals and 

potentially fuels, helping to reduce reliance 
on fossil fuels and to put a dent in industrial 
carbon emissions. 

The discovery grows out of work pub-
lished last year by University of Toronto 
engineer Ted Sargent, describing a similar 
process that used more electricity and was 
less efficient overall. So Sargent says he 
sought out researchers at the California 
Institute of Technology who are “black 
belts in molecular design and synthesis.” 

Caltech chemists Jonas Peters and  
Theodor Agapie and their colleagues 

experimented with organic molecules to 
add to the copper catalyst. An arylpyridi-
num salt turned out to be the Goldilocks 
molecule, Sargent says: it formed a water-
insoluble film on the copper that positioned 
the carbon dioxide so its molecules reacted 
most efficiently with one another, without 
slowing down the reaction. The result was 
more ethylene, with fewer by-products 
such as methane and hydrogen.

Still, the process must become even 
more efficient before it can be commercial-
ly scalable and use carbon scrubbed or 
captured from facilities such as coal- or 
gas-burning power plants. Lower energy 
costs, already occurring with renewable 
energy sources such as wind, could also 
help make it more feasible. 

“This is a significant breakthrough,” 
says Randy Cortright, a senior research 
adviser at the National Renewable Energy 
Laboratory in Golden, Colo., who was not 
involved in the study. This result, he says, is 
“something that a lot of people are going 
to pay attention to, and they’re going to be 
able to build on.”  — Susan Cosier

Prototype of a catalyst to 
make ethylene using CO2
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EPIDEMIOLOGY 

A Disease’s 
Journey 
Mutation-tracking tools that 
traced a drug-resistant TB strain 
could help squash epidemics 

In 2005 and 2006,  53 patients who 
checked into a rural South Africa hospital 
turned out to be infected with extensively 
drug-resistant tuberculosis (XDR TB). The 
bacterium proved impervious to antibiot-
ics, ultimately killing 52 of the patients. 

This outbreak in Tugela Ferry, KwaZu-
lu-Natal province, was the largest ever 
reported for XDR TB—and the primary 
strain involved currently accounts for near-
ly 80 percent of such infections in the 
province. New research finally tells the  
full story of the deadly strain’s origin. As 
reported last October in the  Proceedings 
of the National Academy of Sciences USA,  it 
in fact emerged 250 miles away, more than 
a decade before the first recorded case. 
The researchers behind the paper say the 
multidisciplinary tool set they used to find 
its origin could help identify other drug-
resistant pathogens early, as they emerge, 
and stop them from spreading. 

“The bottom line is that this strain, like 
many other pathogens, took time to build,” 
says Barun Mathema, an epidemiologist at 
Columbia University and the paper’s senior 
author. “But if you have your eye on the 
ball, you can pick up on these mutations 
and take action.” 

Mathema and his colleagues sequenced 
more than 300 TB genomes from patients 
infected in KwaZulu-Natal, mostly from 2011 
to 2014, and found 78 percent of the samples 
were genetically related to the Tugela Ferry 

strain. Phylogenetic reconstruction (a statis-
tical method used to infer evolutionary histo-
ry) revealed when the strain’s mutations 
appeared and expanded, and the scientists 
built 3-D models of the bacterium’s protein 
structures to find how each mutation helped 
the pathogen build resistance and adapt. 
They learned the strain had acquired three 
important and unusual mutations, the first in 
the early 1980s and the last around 1993. In 
the mid-1990s South Africa’s HIV epidem-
ic—which created a population with com-
promised immune systems—helped the 
strain to spread. The researchers looked at 
the samples’ geographical distribution from 
associated GPS data and used population 
genetics and geospatial modeling to deter-
mine how genetic changes propagated from 
place to place. They found that the strain 
originated far from Tugela Ferry and migrat-
ed via popular travel routes. “All these fac-
tors came together to make this an explosive 
outbreak,” Mathema says. 

Drug resistance is a growing problem 
worldwide. Mathema adds that applying 
whole-genome sequencing in real time to 
samples taken from patients, combined 
with a multipronged analytical approach 
akin to the one applied here, could help 
researchers detect worrying mutations 
before they become emergencies. Public 
health agencies in London, New York City, 
and elsewhere already do whole-genome 
sequencing on a small scale—but a lack of 
funding, expertise and capacity presents 
obstacles for expanding this vision. 

“A lot of people in the field agree that 
this is where things should go,” says Maha 
Farhat, a biomedical informatics research-
er at Harvard Medical School and pulmo-
nary and critical care physician, who was 
not involved in the research. “But that 
would involve public health agencies in -
vesting in these tools.”  — Rachel Nuwer

Chest x-ray highlights the impact of a tuberculosis infection.
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A Disease’s 
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“I can indeed hardly see 
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if so the plain language of 
the text seems to show that 
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punished. And this is a 
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CONSERVATION 

Beating Back 
Extinction 
Indigenous-managed lands  
may provide a model for 
maintaining biodiversity 

Scientists,  conservation organizations and 
governments trying to stem the tide of 
extinction often focus efforts on protected 
areas such as national parks and wildlife pre-
serves. But with as many as a million species 
at risk, this strategy may not be enough to 
conserve wildlife, especially in a world 
increasingly disrupted by climate change. 

Slowing the mass extinction that now 
appears to be underway will require more 
creative means of coexisting alongside wild 
plants and animals. A new study underscores 
the effectiveness of some such approaches 
by examining indigenous-managed lands. 

“We show really strongly that, from a 
biodiversity standpoint in terms of species 
richness, indigenous-managed lands are at 
least comparable to protected areas,” says 
biologist Richard Schuster of Carleton Uni-

versity. And in some places, they far surpass 
parks and preserves—even though indige-
nous communities may utilize their lands’ 
resources by hunting or foraging for food. 

Schuster and his team analyzed more 
than 15,000 areas in Australia, Brazil and 
Canada. They found that the total diversity 
of birds, mammals, amphibians and reptiles 
was highest on lands either managed or co-
managed by indigenous groups, whereas 
randomly selected locations with no formal 
protection were the least biodiverse. For 
threatened species in particular, indigenous 
lands scored slightly higher than protected 
lands on overall species richness in Brazil 
and Canada, as well as higher for threatened 
amphibians and reptiles in Australia, mam-
mals in Brazil, and birds and reptiles in Cana-

da. The results were published last Novem-
ber in  Environmental Science and Policy. 

Each country has a different geography, 
climate and colonization history. Yet remark-
ably, Schuster says, the best indicator for 
species diversity is whether a given area was 
managed by an indigenous community. He 
points out that practices such as sustainable 
hunting, fishing and foraging, as well as pre-
scribed burning, are more likely to occur in 
such areas. Don Hankins, an ecologist at  
California State University, Chico, who is  
a member of the Plains Miwok indigenous 
nation and was not involved in the study, 
agrees. “There’s probably going to be more 
of a connection to the land,” he says, “and a 
use of the land for the things that are there, 
compared to a national park.” 

“It’s really important to listen to the 
people who live on the land and have them 
drive the stewardship efforts going for-
ward,” Schuster says, adding that partner-
ing with indigenous communities may 
enable the world’s countries to better 
meet a wide range of conservation goals: 
“We really need all the help we can get as 
a global community to avert the extinction 
crisis that we’re facing right now.”  
 — Jason G. Goldman

For more details, visit  
www.ScientificAmerican.com/ 
feb2020/advances 

IN THE NE WS 

Quick 
Hits 
 By Sarah Lewin Frasier

 ETHIOPIA 
Microbes thrive in many of Earth’s harshest environ­
ments, but researchers found no life at all in briny, 
scorching, acidic pools near Ethiopia’s Dallol volcano. 
Knowing boundaries for life’s adaptation helps to 
narrow the search for Earth­like life on other planets. 

 PERU 
Researchers analyzing satellite and imaging data have 
found 143 new Nazca lines—large line drawings of 
humans, animals and symbols etched into the Peruvian 
landscape millennia ago. They include a humanoid 
figure 16 feet across, spotted by IBM’s Watson AI system. 

 NORWAY 
Archaeologists’ ground-piercing radar found 
a Viking-era ship, surrounded by a filled ditch, 
lurking below the soil of a western Norway 
farm. It was once within a burial mound. 

 BRAZIL 
Despite the long dry spells in Brazil’s Caatinga region, 
scientists found the tree  Hymenaea cangaceira  drizzles 
copious nectar from flowers to attract pollinating bats; 
a full-size tree can release 240 gallons of the stuff, with 
38 distinct scent compounds, over a single dry season.

 U.S. 
Off the California coast, 
scientists measured a 
blue whale’s heart rate 
for the first time, using 
a device attached to the 
animal’s skin by suction 
cup. The heart, likely 
weighing hundreds of 
pounds, beats from two 
to 37 times per minute, 
varying dramatically 
between diving, feeding 
and surfacing. 

 JORDAN 
Researchers uncovered a 
two-horned figure in early 
Islamic ruins that may be 
the earliest chess piece 
ever found. The roughly 
1,300­year­old object 
matches a “rook” found  
in an Iranian chess set 
from about 400 years later.

Writing-on-Stone/Áísínai’pi in Canada
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Flocking 
Phase Change
New study shows how  
jackdaw flocks vary  
between chaos and order 

Jackdaws switch  between two sets of 
flocking rules with differing results, a new 
research has found. Flocks flying to winter 
roosts are orderly no matter how many birds 
they contain; those rallying to ward off pred-
ators are initially disorganized when their 
numbers are small and then suddenly flip  
to order once enough birds join in.

Swimming bacteria, marching locusts, 
schooling fish and flocking birds all function as 
cohesive units. This phenomenon can emerge 
when individual agents following identical 
rules come together, says Alex Thornton, who 
studies cognitive evolution at the University 
of Exeter in England. “We got used to think-
ing of collective behavior as this almost phys-
ical phenomenon,” he says. “So the idea that 
animals might actually change the rules that 
they use when their environment and what 
they’re trying to achieve are different is quite 
novel and exciting.” Thornton is co-author 
on the new work, detailed last November in 
 Nature Communications.

The researchers filmed flocking wild 
jackdaws in Cornwall, England, with four 
synchronized high-speed cameras, chart-
ing individuals’ positions and trajectories. 

Of the 16 flocks recorded, six were 
“transit flocks”—jackdaws returning to their 
roosts on winter evenings. In these groups, 
regardless of size, each jackdaw adjusted 
its trajectory based on a fixed number of 

neighbors and always maintained order.
To initiate “mobbing flocks,” the 

researchers presented to groups of jack-
daws a taxidermy fox holding a fake, flap-
ping bird and played alarm calls that the 
birds commonly use to recruit allies against 
predators. In this context, jackdaws in -
stead navigated by tracking all birds that 
were within a fixed distance. “With these 
[predator-mobbing] rules, you have emer-
gence of order from chaos,” Thornton 
says. “Small flocks are disorganized. When 
the density of the flock reaches a threshold 
level, suddenly there is order—much like 
how a gas transitions into a liquid.” These 
transitions have never been observed in 
birds before, he adds. 

“The novelty comes in comparing the 
same species in different ecological con-
texts, which [the researchers] implement-
ed via a clever technique,” says Shashi 
Thutupalli, who studies living systems’  
self-organization at India’s National Center  
for Biological Sciences and who was not 
involved in the research. He wonders 
whether “influencers” in a flock might lead 
these adjustments and whether other spe-
cies make similar behavioral switches.

“What our work shows is that you can-
not ignore the external environment in try-
ing to model collective behavior in biologi-
cal systems,” says Nicholas Ouellette, a 
physicist at Stanford University and co-au-
thor on the study. Drawing inspiration from 
jackdaws, he says, engineers could some-
day use context-dependent responses to 
build fleets of drones that work together for 
firefighting, surveying and search-and-res-
cue missions: “It allows you to think about 
designing systems that are more flexible, 
that can change the rules to make the 
behavior more robust.”  — Harini Barath

Jackdaw flock
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PHARM ACOLOGY 

Fungus Secret 
Next-generation opioids may 
spring from a tiny fungal protein 

Opioids relieve pain  very effectively by 
activating particular receptors—proteins 
that are found on cells and respond to spe-
cific substances. But these drugs also 
cause serious side effects, including respi-
ratory depression, which can be lethal. 
New research could inspire next-genera-
tion opioids that provide pain relief with 
fewer such risks. 

Scientists in Australia have discovered 
peptides, tiny strands of amino acids, that 
act like opioids in some ways and come 
from an unlikely source: a  Penicillium  fungus. 
“This beast was found in a very pristine 
estuary at the end of the world, in Tasma-
nia,” says Macdonald Christie, a neurophar-
macologist at the University of Sydney and 
senior author on the new study, detailed last 
October in the  Proceedings of the National 
Academy of Sciences USA.  Peptides that can 
activate opioid receptors to modify pain lev-

els are rarely found outside the vertebrate 
nervous system, he says. 

Opioid receptors belong to a family that 
controls countless brain functions. These 
receptors send signals within associated cells 
using molecules called G-proteins. For a long 
time, researchers thought drugs interacting 
with an opioid receptor would simply insti-
gate G-protein signaling or block it, Christie 
says. But scientists have since learned that 
opioid receptors associate with many other 

proteins, too, influencing multiple signaling 
pathways within cells. 

“Most drug discovery has been based on 
efforts to turn on or off that G-protein inter-
action,” says Laura Bohn, a neuroscientist 
now at the Scripps Research Institute in 
Florida, who was not involved in the work. 
But “instead of continuing to just flip the 
switch, we can look for ways to dial in what 
we want—and what we want is pain relief. 
What we don’t want is respiratory depres-

BIOLOGY 

Cryptic 
Predators 
Beetles have an outsize impact 
on their vertebrate prey 

When ecologist Jose Valdez  and his team 
released 10,000 tadpoles to populate a new 
conservation site in Newcastle, Australia, 
they surrounded the area with a mesh fence 
to keep out hungry snakes, birds and mam-
mals. But they hadn’t considered much 
smaller predators: diving beetles. The 
researchers soon began to witness the 
insects’ violent attacks, and three years  
later only a handful of frogs remained. In 
two recent papers, Valdez, a researcher  
at Denmark’s Aarhus University, and his 
colleagues documented the beetles’ devas-
tating predation tactics and possible impli-
cations for conservation efforts.

Predators are usually larger than their 

prey, with vertebrates such as amphibians 
typically doing the eating when it comes to 
insects. Although role reversal has been 
reported—such as praying mantises con-
suming lizards—scientists consider this rare. 

Valdez suspects insects’ predatory behavior 
has been underestimated, however. “Our 
two studies show that perhaps they may 
have a big effect,” he says, “especially for 
endangered species with small populations.” 

It is unusual to see insects hunting in 
packs. But while monitoring one pond at 
night, Valdez saw about 12 adult diving 
beetles surround a tadpole and quickly pull 
it apart. “I was shocked at how viciously 
and quickly these beetles took down a 
much larger tadpole,” he says. 

The researchers also noticed that cer-
tain diving beetles laid their eggs inside 
frog egg clutches, seemingly timed to 
hatch so the insect larvae could hunt down 
newborn tadpoles. The beetle larvae killed 
up to three tadpoles an hour, often dis-
carding a half-eaten one if another was 
close by. “None of these behaviors were 
documented before,” Valdez says. His 
team detailed its work last December in 
 Entomological Science  and online last 
August in  the Australian Journal of Zoology. 

Because insects are small, their preda-

Illustration of  Penicillium  fungi
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sion to [the point of] overdose, and we don’t 
want addiction.” Bohn’s research connected the 
pain-relief effects of the common opioid mor-
phine to activation of G-proteins, and it linked 
morphine’s respiratory depression to activating 
a regulatory protein called beta-arrestin. 

Most opioids (and all known naturally 
occurring ones, Christie says) activate beta-
arrestin as well as G-protein signals. But bilor-
phin—a compound the researchers in the new 
study created based on the fungal peptides—
focused on just the G-proteins, Christie says. 
“That was something big to us,” he adds, 
“because we knew that everyone in pharma 
was working on developing [opioid com-
pounds] that don’t signal to arrestin.” (Bohn 
and Christie agree, however, that finding 
drugs free of side effects will be more nuanced 
than simply avoiding beta-arrestin signaling.) 

The researchers tested bilorphin in mice, 
but it blunted pain signals only when injected 
directly into the spinal cord, which means that 
it could not cross the blood-brain barrier. The 
challenge will be to design bilorphin-inspired 
compounds that can get inside the brain and 
retain their unique signaling capabilities—ide-
ally stopping pain without stopping breathing. 
 — Stephani Sutherland

tory behavior is easy to miss—and they often 
attack in difficult-to-observe settings, such as 
at night or underwater. But such assaults are 
emerging from the shadows: recent studies 
have documented praying mantises regularly 
eating small birds, as well as giant water bugs 
consuming vertebrates such as turtles, frogs 
and snakes in Japanese rice fields. 

Insect predation could play a hidden role in 
declining amphibian populations. The Interna-
tional Union for Conservation of Nature esti-
mates that at least 40 percent of amphibian spe-
cies are threatened with extinction; Eric Nord-
berg, an ecologist at James Cook University in 
Australia, says attempts to protect them typical-
ly focus on environmental factors such as habitat 
loss and invasive species, whereas the impact of 
invertebrate predation is understudied. 

Next, Valdez plans to quantify diving bee-
tle predation on various amphibians. He will 
analyze insect gut contents and use cameras 
to capture more of the behavior. “We may 
finally begin to recognize their role in shaping 
vertebrate communities,” he says.  
 — Sandrine Ceurstemont
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Mathematical Glossolalia 
As though time could have a hobby  
we speak in eigenvalues, the harmonious  
oscillations in the green flash before sunset. 

We interpret  raised to the power  to mean  
 you were taken in by numbers  
as a young babe & your childhood 

can be classified irrational. Euclid,  
Euler, the empty set’s a nest atop a piling.  
If two words diverge on the open seas & 

the dot product is without derivative, the intercept  
can be found only by Venn diagrams on the tongue.  
Swallowed by wave functions, turning back, theorems 

to explain the circumference of illusion, good heavens, 
the sailboat’s isosceles never goes slack. 
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THE SCIENCE  
OF HEALTH Claudia Wallis  is an award-winning science journalist whose 

work has appeared in the  New York Times, Time, Fortune  and the 
 New Republic.  She was science editor at  Time  and managing editor 
of  Scientific American Mind. 

Modern heart surgery  is miraculous. To think a failing aortic 
valve can be replaced via catheter without even cutting open the 
chest is to appreciate one of the wonders of 21st-century medi-
cine. But as two recent landmark studies suggest, we may be a bit 
too avid for cardiac procedures. When it comes to treating some 
common heart conditions, medication can often get the job done. 

That was the lesson of the much anticipated ISCHEMIA trial, 
the results of which were revealed at last November’s meeting of 
the American Heart Association. The study involved 5,179 people 
with moderate to severe ischemia—insufficient blood flow to the 
heart—caused by narrowing of the coronary arteries. All partici-
pants in ISCHEMIA (International Study of Comparative Health 
Effectiveness with Medical and Invasive Ap  proaches) got medica-
tion optimized for their needs: statins and sometimes additional 
cholesterol-reducing drugs; aspirin or other blood thinners; plus 
drugs to lower their blood pressure and heart rate where helpful. 
Subjects were educated on diet, exercise and relaxation tech-
niques. But half the participants were randomly selected to also 
be treated with either stents—devices that prop open narrowed 
vessels—or, if stenting was not possible, with bypass surgery. 

Although both procedures are routinely used to treat blocked 
vessels, researchers found that over a three-year period they of -
fered no advantage over drug therapy alone in reducing the rate 
of heart attacks, hospitalization for heart failure or chest pain, or 
cardiac death. Past studies had come to similar conclusions, but 
this trial was larger and better designed, involving patients with 
more severe cardiovascular disease—the very patients thought to 
benefit from an invasive approach. Still, it makes sense that med-
ication works so well: “When you have coronary narrowing, it’s 
not just where you see it; it’s all throughout the arteries,” explains 
study chair Judith Hochman, senior associate dean of clinical sci-
ences at NYU Langone Health. “Medical therapy addresses all of 
them where stenting addresses only the focal ones.” 

Where the procedures did outshine drugs was in reducing 
chest pain, or angina. One out of five patients who had daily or 
weekly chest pain became angina-free within one year with drug 
therapy, but that rose to one out of two with the invasive strategy. 
That finding suggests that people prone to angina might want to 
opt for a procedure. It’s important to note that stents and bypass 
remain vital therapies for people suffering from heart attacks or 
unstable angina and those with narrowing of the left main coro-
nary artery—all higher-risk groups not included in this trial. 

Another study comparing heart medication with a more inva-
sive treatment yielded similar results. Published last March, the 

CABANA trial looked at two approaches to atrial fibrillation—
bouts of rapid, irregular heartbeats that afflict about 2 percent of 
adults younger than 65  and 9 percent of seniors in the U.S. The 
2,204 patients in the study were randomly assigned to be treated 
with just medication or with catheter ablation, a procedure in 
which heat or cold was used to isolate or destroy heart tissue caus-
ing the abnormal rhythm. In this study, too, there was no differ-
ence between the two groups in mortality or in rates of disabling 
stroke, serious bleeding or cardiac arrest. Again, there was a dif-
ference in terms of symptoms: ablation patients were less likely to 
have recurrent attacks of A-fib and reported a better quality of life. 
By some measures ablation also outperformed drugs for pa  tients 
younger than 65, minorities, and people with heart failure, says 
cardiologist Douglas Packer of the Mayo Clinic, who led the trial. 

The studies should help put more decision-making power into 
the hands of patients. Rather than being rushed to the “cath lab” 
for a procedure on pain of death, people can take time to weigh 
their options. “I think the two studies are, in some senses, are 
twins,” says Stephen Wiviott, a cardiovascular medicine specialist 
at Brigham and Women’s Hospital, who was not involved in either 
trial. “They are fairly patient-empowering.” 

The studies’ impact will be fascinating to see. At least 500,000 
cardiac stent procedures are done annually in the U.S., many on 
an emergency basis. If doctors simply stopped doing them elec-
tively in the least symptomatic patients—those without angina—
the U.S. could eliminate about 22,800 procedures a year, saving 
about $570 million, Hochman says. Ablations may also decline for 
people with few A-fib symptoms, but Packer says the quality-of-
life argument for many patients is strong: “CABANA can’t support 
the notion that people will live longer because of an ablation. It 
supports the notion that they will live better.” 

Illustration by Fatinha Ramos

The Case for Less 
Heart Surgery 
For some of the most common cardiac 
conditions, medication is a solid alternative 
By Claudia Wallis 
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VENTURES 
THE BUSINESS OF INNOVATION

Wade Roush  is the host and producer of Soonish, a podcast 
about technology, culture, curiosity and the future. He  
is a co-founder of the podcast collective Hub & Spoke and 
a freelance reporter for print, online and radio outlets,  
such as MIT Technology Review, Xconomy, WBUR and WHYY.  
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The names we give  our technologies are often  ... aspirational. 
 Automobiles  can move on their own—meaning without horses—
but they still can’t steer themselves reliably. Visiting via telepres-
ence is nothing like being there.  Smartphones  have very low IQs. 
 Augmented reality  (AR) has been in this same hopeful category 
since the term was coined in the early 1990s. It was meant to de ­
scribe screen­mediated experiences that add information to one’s 
surroundings rather than replacing those surroundings, as  vir-
tual reality  does. The problem turns out to be very hard to solve. 

For one thing, AR objects need to look real, to stick solidly in 
place, and to stay there in shared environments (the “localization” 
problem). Creators need tools to build them, and users need ways 
to find and interact with them. And all of it needs to happen with­
out blocking out the actual world; otherwise AR feels more like 
degraded reality. One by one, however, innovators have been 
removing those roadblocks. An era when we can all use AR for 
work, learning and entertainment is coming into view:

■  In 2016 Microsoft introduced HoloLens, a self­contained AR 
headset, and last November it started selling an improved version 

to business users for $3,500 per unit. Consumers can now buy a 
similar headset for $2,300 from the lavishly funded and much 
hyped start­up Magic Leap. Both devices use see­through lenses 
called waveguides to create a 3­D effect. 

I tried the Magic Leap One glasses recently. Used indoors, they 
generate remarkably bright, solid­looking objects, such as ani­
mated animals or robots, that register perfectly with their sur­
roundings. For the moment, though, both headsets suffer from a 
limited field of view: about 50 degrees diagonally. That’s less than 
half the arc visible to the human eye, meaning that not much of 
your surrounding reality gets augmented. 
■  Last November, San Francisco–based start­up Ubiquity6 re ­
leased Display.land, an app that lets users capture, annotate, dec­
orate and share photorealistic 3­D models of real­world places 
using the cameras on their smartphones. Phone­sensor data and 
computer­vision techniques allow Ubiquity6 to pin these models 
to the real world with an accuracy of centimeters. 

Anjney Midha, co­founder and CEO of Ubiquity6, says he 
thinks of Display.land as the grown­up version of Minecraft, Rob­
lox, Fortnite Creative and other virtual worlds that allow kids to 
author and share their own creations. “The worlds they’re build­
ing have Lego­like aesthetics, but once you bring in photorealism, 
you ‘age up,’ ” Midha says. “Adults also have a desire to express 
themselves and be creative in immersive ways. They just haven’t 
had an easy­enough tool to do it.” 
■  Also in November, a start­up called Sturfee in Milpitas, Calif., 
emerged from stealth mode with a technique that helps to solve 
the localization problem outdoors. It uses satellite imagery and 
computer vision to figure out what a smartphone camera is point­
ing at and to retrieve the right underlying 3­D mesh to anchor 
shared, persistent AR objects. But even before this was available, 
producers were going beyond games to create compelling outdoor 
AR projects. One example is the interactive Museum of the Hid­
den City, a tour from Walking Cinema that shows visitors to San 
Francisco powerful visual evidence of the way racist “slum clear­
ance” projects transformed a minority neighborhood. 
■  Tech Web sites are abuzz with rumors that Apple will place 3­D 
distance sensors alongside the back­facing cameras of new 
iPhones in 2020, allowing developers to build more powerful AR 
apps. The company is also thought to be designing its own AR 
glasses, with a release date as soon as this year or as late as 2023. 

AR has already reached consumers through smartphone­
based games such as Pokémon Go and Harry Potter: Wizards 
Unite, both from Niantic. Such experiences will gain fidelity and 
become more collaborative—but they will run mostly on phones 
because AR headsets are still bulky and expensive. “If I want to 
allow real­time collaboration for people in my warehouse, I’m 
happy to pay for $2,000­plus hardware,” Midha says. “But con­
sumers are going to be on smartphones for a while.” Which leaves 
us plenty to aspire to. 

JOIN THE CONVERSATION ONLINE 
Visit Scientific American on Facebook and Twitter  
or send a letter to the editor: editors@sciam.com

Augmenting 
Reality, for Real 
The gap between the real and  
digital worlds is narrowing 
By Wade Roush 
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Neural circuits that track our whereabouts  
in space and time may also play vital roles in 
determining how we relate to other people

By Matthew Schafer and Daniela Schiller

We are often told that there are no shortcuts in life. But  
the brain—even the brain of a rat—is wired in a way that completely 
ignores this kind of advice. The organ, in fact, epitomizes a short cut-
finding machine. 

The first indication that the brain has a knack for finding alternative 
routes was described in 1948 by Edward Tolman of the University of  
California, Berkeley. Tolman performed a curious experiment in which a 
hungry rat ran across an unpainted circular table into a dark, narrow 

THE  
BRAIN’S 
SOCIAL 

ROAD  
MAPS 

N E U R O S C I E N C E
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corridor. The rat turned left, then right, and then took another 
right and scurried to the far end of a well-lit narrow strip, where, 
finally, a cup of food awaited. There were no choices to be made. 
The rat had to follow the one available winding path, and so it did, 
time and time again, for four days. 

On the fifth day, as the rat once again ran straight across the 
table into the corridor, it hit a wall—the path was blocked. The 
animal went back to the table and started looking for alterna-
tives. Overnight, the circular table had turned into a sunburst 
arena. Instead of one track, there were now 18 radial paths to 
explore, all branching off from the sides of the table. After ven-
turing out a few inches on a few different paths, the rat finally 
chose to run all the way down path number six, the one leading 
directly to the food. 

Taking the path straight to the food cup without prior experi-
ence may seem trivial, but from the perspective of behavioral 
psychologists at the time, the rat’s navigational accomplishment 
was a remarkable feat. The main school of animal learning in 
that era believed that maze behavior in a rat is a matter of sim-
ple stimulus-response associations. When stimuli in the envi-
ronment reliably produce a successful response, neural connec-
tions that represent this association get strengthened. 

In this view, the brain operates like a telephone switchboard 
that maintains only reliable connections between incoming 
calls from our sense organs and outgoing messages to the mus-
cles. But the behavioral switchboard was unable to explain the 
ability to correctly choose a shortcut right off the bat without 
having first experienced that specific path. Shortcuts and many 
other intriguing observations along these lines lent support to a 
rival school of thought promulgated by theorists who believe 
that in the course of learning, a map gets established in a rat’s 
brain. Tolman—a proponent of that school—coined the term: 
the cognitive map. 

According to Tolman, the brain does more than just learn the 
direct associations among stimuli. Indeed, such associations are 
often brittle, rendered outdated by changes in the environment. 
As psychologists have learned in the decades since Tolman’s work, 
the brain also builds, stores and uses mental maps. These models 
of the world enable us to navigate our surroundings, despite com-
plex, changing environments—affording the flexibility to use 
shortcuts or detours as needed. The hungry rat in Tolman’s exper-
iment must have remembered the location of the food, inferred 
the angle to it and chosen the route most likely to bring it to its 
goal. Quite simply, it must have built a model of the environment. 

Such model building or mapmaking extends to more than 
physical space. Mental maps may exist at the core of many of our 
most “human” capacities, including memory, imagination, infer-
ences, abstract reasoning and even the dynamics of social inter-
actions. Researchers have begun to explore whether mental 
maps document how close or distant one individual is to anoth-

er and where that individual resides in a group’s social hierarchy. 
How does the brain, in fact, create the maps that allow us to 
make our way about the world? 

 A SPATIAL MAP 
the first hints  of a neural basis for mental maps came in the 
1970s. While studying a brain region called the hippo campus in 
rodents, John O’Keefe of University College London, along with 
his student Jonathan Dostrovsky, discovered a particular class of 
neurons that becomes active when mice occupy specific locations 
in their environment. Some of these neurons fired when the ani-
mal was in one location, and others switched on when it moved to 
the next spot on the path along which it traveled, as if the cells 
were specialized to track  where  the animal was in space. By link-
ing sequences of these “place cells” together, researchers were able 
to reconstruct an animal’s navigational trajectory. Work over the 
intervening decades confirmed the existence of place cells in oth-
er animals, including humans, and clarified many of their proper-
ties. Along the way, a host of cell types surfaced, each uniquely 
contributing to the brain’s encoding of spatial representations. 

In the nearby entorhinal cortex, a region connected to the 
hippo campus, a research team led by Edvard Moser and May-
Britt Moser, former postdoctoral visiting fellows in O’Keefe’s lab-
oratory, discovered neurons highly similar to place cells. These 
cells also fired when an animal was in specific locations. But 
unlike place cells, each of these newly discovered cells spiked in 
multiple, regular locations. When mapped onto the animal’s 
position, the activity patterns of these “grid cells” resembled 
highly regular, equilateral triangles. Like a spatial metric, these 
cells fired when an animal passed over the vertices of the trian-
gles. The discovery of these cell types sparked excitement 
because of the emerging picture of how the brain controls navi-
gation. Place cells and grid cells could provide a means to locate 
oneself in space and determine distance and direction. These 
navigational tools are crucial for building mental maps. (O’Keefe 
and the Mosers received the 2014 Nobel Prize in Medicine or 
Physiology for their work on place and grid cells.) 

A wide variety of information is useful for creating such a map, 

I N  B R I E F

How do animals , from rats to humans, intuit short-
cuts when moving from one place to another? Sci-
entists have discovered mental maps in the brain 
that help animals picture the best routes from an 
internalized model of their environments. 

Physical space  is not all that is tracked by the 
brain’s mapmaking capacities. Cognitive models of 
the environment may be vital to mental processes, 
including memory, imagination, making inferences 
and engaging in abstract reasoning. 

Most intriguing  is the emerging evidence that 
maps may be involved in tracking the dynamics of 
social relationships: how distant or close individuals 
are to one another and where they reside within 
group hierarchies. 

Daniela Schiller   is an associate professor of both 
neuroscience and psychiatry at the Icahn School of 
Medicine at Mount Sinai. She researches the neural 
mechanisms underlying emotional control needed  
to adapt to constantly changing environments. 

Matthew Schafer  is pursuing a doctorate in 
neuroscience at the Icahn School of Medicine at  
Mount Sinai, focusing on the neural mechanisms  
of social cognition in the human brain. 
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Illustrations by Jen Christiansen

and the hippo campus-entorhinal system encodes much of it. Dis-
covering the location of a physical goal is one example: as an ani-
mal navigates toward an objective, some hippocampal neurons 
fire depending on the direction and distance to reach it. The cells 
increase their firing rate as the animal approaches the goal. 

Other cells also enter the picture. A dedicated population of 
“reward” cells encodes reward locations across different environ-
ments, providing a signal to guide an animal’s navigation (think 
of an “X” marking the spot of treasure on a pirate’s map). Other 
cells track speed and direction and in doing so act like internal 
speedometers and compasses that compute an animal’s prog-
ress as it travels through the environment. Specific cells that sig-
nal the locations of landmarks in the surroundings serve as ref-
erences to correct errors in the animal’s trajectory. A map must 
also have edges: cells that fire more as the animal approaches 
the map’s perimeter. 

For humans, the importance of such an abundance of cell 
types seems obvious: the brain is responsible for knowing the 
location of home and work, walls and dead ends, a favorite shop or 
the corner store. It is still a mystery as to how all of this informa-
tion is drawn together into a coherent map, but these cells appear 
to provide the parts list for the elements of neural mapmaking. 

This hippo campal-entorhinal system is more than a map-
maker, though, and the maps are more than a way to locate one-
self in space. Active planning occurs by using these maps. When 
a rat comes to a junction in a familiar maze, it will pause while 
place cell firing sequences that relate to the different options are 
activated, as if the animal is contemplating the choices. 

Humans engage similar processes. Research in participants 
navigating virtual environments while their brains were scanned 
with functional magnetic resonance imaging shows that the 
hippo campus becomes active in ways consistent with spatial 
planning, such as considering and planning routes. 

Shaping plans also occurs during sleep. Sequences of place 
cell activity can reactivate during sleep to replay the past or sim-
ulate the future. Without the ability to simulate new behaviors, 
we would have to explore a multitude of real-world options 
before deciding on what action to take. We would be constant 

empiricists, only able to act on direct observations. Instead off-
line simulations give us the ability to envision possibilities with-
out directly experiencing them. 

 MENTAL TIME TRAVEL 
time and space  are inextricably linked. It is difficult to talk about 
time without borrowing a spatial metaphor: time “passes” as we 
“move” through it. We look “forward” to the future and “back” on 
our past. The same hippocampal-entorhinal system tracks move-
ment through time. Work done largely in the lab of the late How-
ard Eichenbaum of Boston University revealed neurons in the 
hippocampal-entorhinal system that encode the time course of 
an animal’s experience. Time cells fire at successive moments 
but do not track time in a simple clocklike fashion. Instead they 
mark temporal context—stretching or shrinking their firing 
durations if the length of a task changes, for example. Some time 
cells encode space as well. In the brain, in fact, physical and tem-
poral space may be bound together. 

The discovery of the crucial importance of these brain areas 
in space and time was not totally surprising. Psychologists had 
long suspected it to be the case. In 1953 Henry Molaison under-
went bilateral hippocampal resection surgery to reduce extreme, 
life-disrupting epileptic seizures. The surgery was successful at 
quelling the seizures. But Molaison—known for decades only as 
H.M.—became one of the most renowned cases in the history of 
the brain sciences. 

Molaison could remember most experiences from before his 
surgery—people he knew and recollections from culture and 
politics. But his ability to form such explicit memories postsur-
gery was practically nonexistent. Even so, certain types of learn-
ing and memory remained untouched: he could still learn some 
new skills with enough practice. But his recollections of new 
people, facts and events were immediately lost. 

From observing Molaison, neuroscientists discerned that the 
hippo campus was essential in forming the episodic memories 
that record facts and events. Research on the role of the hippo-
campus in episodic memory exploded, largely in parallel to stud-
ies on its maplike functions. 

Giving Way to the Abstract
Maps simplify the world  by reducing an overwhelming amount of sensory and cognitive data into a format that can be used for 
navigating physical space, pointing to shortcuts and detours to reach a destination faster. The organization of such maps—built on  
the activity of cells dedicated to tracking both space and time—scales in the abstraction of what they represent: from the recognition 
of another individual along the way to even a complex space that denotes social power and closeness to others. 
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The discoveries about the roles of the hippo campus and ento-
rhinal cortex in spatial navigation and episodic memory were 
significant for at least a couple of reasons. The work in spatial 
navigation in rodents marked the first time that a higher-order 
cognitive function—something beyond basic sensory pro cesses—  
mapped onto clear neural correlates. H.M. showed us that there 
were multiple types of memory supported by at least partially 
different neural systems, with the hippo campus playing a cen-
tral role in the formation and storage of new episodic memories. 
These discoveries hinted that mechanisms of spatial and tem-
poral navigation might underlie episodic memory. This synthe-
sis is perhaps best ex  plained by the theoretical construct pro-
posed decades earlier by Tolman; both episodic memory and 
spatial navigation might reflect the brain’s formation and use of 
cognitive maps. 

Maps are not accurate portraits of the world in all of its com-
plexity. Rather they are representations of relations—distances 
and directions between locations and what exists where. Maps 
reduce a dizzying amount of real-world information into a sim-
ple, easily readable format that is useful for effective, flexible 
navigation. The cell types mentioned earlier (place cells, grid 
cells and border cells, among others) may piece together such 
related elements into a mental map, which other brain regions 
can then read out to guide “navigation,” amounting to adaptive 
decision-making. Mapping allows relations to be inferred, even 
when they have not been experienced. It also allows for mental 
shortcuts that go beyond the purview of the spatial and tempo-
ral domains. In fact, reasoning using abstract concepts may 
depend on some of these same neural foundations. 

In one example of this new line of work, researchers Alexan-
dra Constantinescu, Jill O’Reilly and Timothy Behrens, all then 
at the University of Oxford, asked participants to learn associa-
tions of different symbols with images of “stick” birds with var-
ious neck and leg lengths. A bird with a long neck but short legs, 
for example, might be linked with the image of a bell, whereas a 
bird with a short neck and long legs might be connected to a 
teddy bear. These linkages created a two-dimensional associa-
tion space. Despite neuroimaging being too crude to detect 
actual grid cells in the human brain, imaging conducted during 
the learned-association testing nonetheless revealed a gridlike 
pattern of activation within the entorhinal cortex.

This finding builds on earlier work by Christian Doeller of 
the Max Planck Institute for Human Cognitive and Brain Sci-
ence in Leipzig, Germany, and Neil Burgess of University Col-
lege London that first showed an entorhinal gridlike represen-
tation in humans navigating a virtual maze. For both physical 
and abstract relations, the gridlike organization is highly effi-
cient. It makes the linkages of places or concepts more predict-
able, enhancing how quickly inferences can be made about 
these relations. As in physical space, this organization of infor-
mation allows for inferring shortcuts—relations between ideas 
or perhaps analogies, stereotypes and even some aspects of cre-
ativity itself could depend on such inferences. 

 PEOPLE MAPS 
the progression  from the physical to the abstract carries over 
into the way the brain represents social relationships. Various 
bits of knowledge about another person are distilled into the 
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Cognitive Cartography 
Is Physical  and  Social

The brain forms the idea  of friend or foe by stitching together 
diverse social characteristics from memories that track one’s 
whereabouts. The recollections, research suggests, can then 
be used to place an individual within a social hierarchy that 
elucidates, say, where one stands in relation to others. 

PLACE AND GRID CELLS
Place cells pinpoint the animal’s whereabouts, each cell firing when 
a particular spot on a mental map is reached. A grid cell activates  
when an animal passes over the vertices of triangles superimposed  
on a mental map. The triangles’ pattern of activation helps the animal 
compute the direction and distance traveled along a route. 

MAKING THE LEAP TO SOCIAL MAPS
Go right at the corner and continue to your destination. Building  
a map of physical surroundings is the work of place and grid  
cells. But the brain may also use these cells for constructing maps 
for social milieus: locating an acquaintance who grows closer but 
loses power in a relationship.  
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concept of that individual. When we see a photograph of some-
one or hear or see that person’s name, the same hippocampal 
cells will fire, regardless of the sensory details of the stimulus 
(for example, the famous “Jennifer Aniston neuron” described 
by Itzhak Fried of the University of California, Los Angeles, and 
his colleagues). These hippo campal cells are responsible for 
representing concepts of specific individuals.

Other hippocampal cells track the physical locations of oth-
ers and are called social place cells. In an experiment by David 
Omer of the Hebrew University of Jerusalem, Nachum Ula-
novsky of the Weizmann Institute of Science in Rehovot, Israel, 
and their colleagues, bats observed other bats navigating a sim-
ple maze to reach a reward. The task of an observer bat was to 
simply watch and learn from a navigating bat, enabling it to 
subsequently navigate the same route to get the same reward. 
When the observer bat watched, hippocampal cells fired corre-
sponding to the location of the other bat. 

Neural circuitry within specific hippocampal subregions  
(in particular, areas called CA1 and CA2) contribute to such social 
memories. Artificial stimulation or inactivation of these hippo-
campal areas enhances or diminishes an animal’s ability to recog-
nize other animals. In humans, hippocampal injury often spares 
memory for specific, individual faces, but the relation between 
this cardinal identifier of another person and that individual’s 
behavior may be lost. That observation suggests that the hippo-
campus does not simply record a face or some other personal 
detail but rather ties together diverse social characteristics. 

Hippocampal activity also tracks social hierarchies: the de -
mands of a boss and a co-worker, for instance, may be valued 
differently and confer different social standings. Common met-
aphors illustrate the spatial dimensions of a hierarchy: a person 
may try to gain status to “climb the social ladder” or “look down” 
at someone below them. Other factors are also critical. Biologi-
cal relatedness, common group goals, the remembered history 
of favors and slights—all determine social proximity or distance. 
Human relationships can be conceived of as geometric coordi-
nates in social space that are defined by the dimensions of hier-
archy and affiliation.

Work in our lab has explored these ideas in recent years. Our 
results suggest that, as with other spaces, the hippo campus 
organizes social information into a map like format. To test this 
hypothesis, we put individuals in a role-playing game in which 
they interacted with cartoon characters and made decisions 
while their brains were scanned. 

In the game, players had just moved to a new town and need-
ed to interact with the fictional characters to secure a job and a 
place to stay. Participants made decisions on how to deal with a 
given character. Players could request that others perform 
favors to demonstrate their power, or they could submit to 
demands made on them. In a subsequent interaction, they could 
decide whether or not to make a gesture of attachment—giving 
a hug or remaining at a distance. 

Using these decisions, we plotted each character at certain 
coordinates on a map representing their movement along the 
dimensions of power and affiliation. In each interaction, we 
drew a line or vector from the participant to the character. In 
this way, we charted the evolving relations as trajectories 
through social space and computed information about the 
angles and lengths of the social vectors. 

We searched for neural signals that tracked this information 
by correlating a participant’s brain activity with the angle and 
length of the vectors for each decision. Activity in the hippo-
campus tracked the angle of the characters to the participant. 
The degree to which hippocampal activity captured these social 
coordinates also reflected the participants’ self-reported social 
skills. These findings suggest that the hippo campus monitors 
social dynamics as it does physical locations by encoding rela-
tions be  tween points in multidimensional space. Indeed, it may 
be that along any arbitrary dimension in which we can order 
information, whether physical or abstract, the hippo campus-
entorhinal system plays a part. 

Many questions about the brain’s social maps still remain 
un  answered. How does this system interact with other brain 
regions? For example, in our role-playing study, we found that 
the posterior cingulate cortex, a region also involved in repre-
senting spatial information, tracked the length of social vec-
tors—functioning in effect as a measuring stick of “social dis-
tance.” Further, a gridlike signal was found in brain regions that 
are interconnected with and tend to co-activate with the hippo-
campal-entorhinal system, suggesting they form a network of 
brain regions with common functional properties. 

As research accumulates, questions of clinical importance 
arise as well. Can flawed mapping processes explain psychiatric 
dysfunction? Another possibility is that insights garnered from 
this brain architecture could inform artificial-intelligence devel-
opment. Well-organized internal models of the world might be 
key to building more intelligent machines. 

That the same mapping system may underlie navigation 
through space and time, reasoning, memory and imagination, 
and even social dynamics suggests that our ability to construct 
models of the world might be what makes us such adaptive 
learners. The world is full of both physical and abstract rela-
tions. Road maps of city streets and mental maps of interrelat-
ed concepts help us make sense of the world by extracting, 
organizing and storing related information. A new coffee shop 
on a familiar street can be easily placed within an existing spa-
tial map. Fresh concepts can be related to older ideas. And a 
new acquaintance can reshape our social space. 

Maps let us simulate possibilities and make predictions, all 
within the safety of our own heads. The mental shortcuts we can 
so readily conjure up might have their basis in the same system 
that allows us to figure out a detour around a traffic jam. We 
have just begun to discover the varied properties and capacities 
of this system. Mental maps do more than help us find shortcuts 
through physical space—they enable us to navigate life itself. 
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Hydrogen is flowing in pipes under tHe streets 
in Cappelle-la-Grande, helping to energize 100 homes in this northern France 
village. On a short side road adjacent to the town center, a new electrolyzer 
machine inside a small metal shed zaps water with electricity from wind and 
solar farms to create “renewable” hydrogen that is fed into the natural gas 
stream already flowing in the pipes. By displacing some of that fossil fuel,  
the hydrogen trims carbon emissions from the community’s furnaces, hot-water 
heaters and stove tops by up to 7 percent. 

Cappelle-la-Grande’s system is a living laboratory 
created by Paris-based energy firm Engie. The compa-
ny foresees a big scale-up of hydrogen energy as the 
cost of electrolyzers, as well as of renewable electrici-
ty, continues to fall. If Engie is right, blending hydro-
gen into local gas grids could accelerate a transition 
from fossil to clean energy. 

The company is not alone. Renewable hydrogen is 
central to the European Commission’s vision for 
achieving net-zero carbon emissions by 2050. It is also 
a growing focus for the continent’s industrial giants. 
As of next year, all new turbines for power plants made 
in the European Union are supposed to ship ready to 
burn a hydrogen–natural gas blend, and the E.U.’s 
manufacturers claim the turbines will be certified for 
100 percent hydrogen by 2030. European steelmakers, 
meanwhile, are experimenting with renewable hydro-
gen as a substitute fuel for coal in their furnaces.

If powering economies with renewable hydrogen 
sounds familiar, it is. Nearly a century ago celebrated 
British geneticist and mathematician J.B.S. Haldane 
predicted a post-fossil-fuel era driven by “great power 
stations” pumping out hydrogen. The vision became a 
fascination at the dawn of this century. In 2002 futur-
ist Jeremy Rifkin’s book  The Hydrogen Economy  proph-
esied that the gas would catalyze a new industrial rev-
olution. Solar and wind energy would split a limitless 
resource—water—to create hydrogen for electricity, 
heating and industrial power, with benign oxygen as 
the by-product. 

President George W. Bush, in his 2003 State of the 
Union ad  dress, launched a $1.2-billion research jug-
gernaut to make fuel-cell vehicles running on hy   dro-
gen commonplace within a generation. Fuel cells in 
garages could be used as backup sources to power 
homes, too. A few months later  Wired  magazine  
published an article entitled “How Hydrogen Can 

Save America” by breaking dependence on dirty im -
ported petroleum. 

Immediate progress did not live up to the hype. 
Less expensive and rapidly improving battery-pow-
ered vehicles stole the “green car” spotlight. In 2009 
the Obama administration put hydrogen work on the 
back burner. Obama’s first secretary of energy, physi-
cist and Nobel laureate Steven Chu, explained that 
hydrogen technology simply was not ready, and fuel 
cells and electrolyzers might never be cost-effective.

Research did not stop, however, and even Chu now 
acknowledges that some hurdles are gradually being 
cleared. The Cappelle-la-Grande demonstration is one 
small project, but dozens of increasingly large, ambi-
tious installations are getting started worldwide, es -
pecially in Europe. As the International Energy Agency 
noted in a recent report, “hydrogen is currently en -
joying unprecedented political and business mo     me n -
tum, with the number of policies and projects around 
the world expanding rapidly.” 

This time around it is the push to decarbonize the 
electric grid and heavy industry—not transportation—
that is driving interest in hydrogen. “Everyone in the 
energy-modeling community is thinking very serious-
ly about deep decarbonization,” says Tom Brown, who 
leads an energy-system modeling group at Germany’s 
Karlsruhe Institute of Technology. Cities, states and 
nations are charting paths to reach nearly net-zero 
carbon emissions by 2050 or sooner, in large part by 
adopting low-carbon wind and solar electricity.

But there are two, often unspoken problems with 
that strategy. First, existing electric grids do not have 
enough capacity to handle the large amounts of re -
newable energy needed to put fossil-fueled power 
plants out of business. Second, backup power plants 
would still be needed for long stretches of dark or 
windless weather. Today that backup comes from nat-

I N  B R I E F

Plans to fully power 
nations  with renew-
able electricity will 
not succeed unless 
countries reconfigure 
all their energy sys-
tems, including fuels. 
Excess solar and 
wind energy  can run 
electrolyzers that 
convert water into 
hydrogen, which is 
distributed in pipe-
lines and converted 
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when needed. 
Hydrogen can be 
stored  in tanks and 
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erns, forming a net-
work that can ener-
gize industry and 
back up electric grids. 
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ural gas, coal and nuclear power plants that grid oper-
ators can readily turn up and down to balance sagging 
and surging renewable supply.

Hydrogen can play the same role, its promoters say. 
When wind and solar are abundant, electrolyzers can 
use some of that energy to create hydrogen, which is 
stored for the literal rainy day. Fuel cells or turbines 
would then convert the stored hydrogen back into 
electricity to shore up the grid.

Cutting carbon deeply also means finding replace-
ment fuels for segments of the economy that cannot 
simply plug into a big electrical outlet, such as heavy 
transport, as well as replacement feedstocks for chemi-
cals and materials that are now based on petroleum, 
coal and natural gas. “Far too many people have been 
misled into believing that electrification is the entire 
[carbon] solution” that is needed, says Jack Brouwer, an 
energy ex  pert at the University of California, Irvine, who 
has been engineering solutions to his region’s dirty air 
for more than two decades. “And many of our state agen-
cies and legislators have bought in,” without considering 
how to solve energy storage or to fuel industry, he says.

Can renewable hydrogen make a clean-energy grid 
workable? And could it be a viable option for indus-
try? Some interesting bets are being made, even with-
out knowing whether hydrogen can scale up quickly 
and affordably.

DARK DOLDRUMS
The few naTions  that have bet big on replacing coal 
and natural gas with solar and wind are already show-
ing signs of strain. Renewable energy provided about 
40  percent of Germany’s electricity in 2018, though 
with huge fluctuation. During certain days, wind and 
solar generated more than 75 percent of the country’s 
power; on other days, the share dropped to 15 percent. 
Grid operators manage such peaks and valleys by 
adjusting the output from fossil-fuel and nuclear pow-
er plants, hydropower reservoirs and big batteries. 
Wind and solar also increasingly surge beyond what 
Germany’s congested transmission lines can take, 
forcing grid operators to turn off some renewable gen-
erators, losing out on 1.4 billion euros ($1.5 billion) of 
energy in 2017 alone.

The bigger issue going forward is how nations will 
cope after the planned phaseout of fossil-fueled pow-
er plants (and, in Germany, also their nuclear plants). 
How will grid operators keep the lights on during dark 
and windless periods? Energy modelers in Germany 
invented a term for such renewable energy droughts: 
 dunkelflauten,  or “dark doldrums.” Weather studies 
in dicate that power grids in the U.S. and Germany would 
have to compensate for  dunkelflauten  lasting as long 
as two weeks.

Beefier transmission grids could help combat  dun-

ELECTRODES  
inside an elec­
trolyzer split 
water molecules 
into oxygen 
( left ) and hydro­
gen ( right ).  
The electrodes 
are one centi­
meter high.
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Grid Support
During windy or sunny days,  excess electricity can be sent 
to run electrolyzer machines ( left ) that split water into 
hydrogen and oxygen. The hydrogen can be stored, and  
if renewable power sources dwindle on calm or dark days, 
the gas can fuel a turbine ( bottom ) that generates electricity 
to shore up the grid. Industry can also use the hydrogen 
directly as fuel and feedstock, instead of fossil fuels or hydro-
gen that today is manufactured from natural gas. 

ELECTRICITY  
CREATES HYDROGEN
Electrolyzers have various designs. In one 
prevalent system ( shown ), water molecules 
react with an anode, splitting into oxygen 
molecules and hydrogen ions. Oxygen is 
released to the air. The hydrogen ions cross 
a polymer membrane to a cathode, where 
they react to form hydrogen gas molecules, 
which are sent to storage. 

HYDROGEN 
CREATES ELECTRICITY
When the grid needs electricity, 
stored hydrogen is sent to a gas 
turbine. It is injected as fuel in a 
combustion chamber, where it mixes 
with compressed air and ignites, 
creating a high-pressure gas  
stream that turns tu r-
bine blades that spin  
a generator, produc-
ing electricity.
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kelflauten  by moving electricity across large regions 
or even continents, sending gobs of power from areas 
with high winds or bright sun on a given day to dis-
tant places that are calm or cloudy. But grid expansion 
is a slog. Across Germany, adding power lines is years 
behind schedule, beset by community protests. In the 
U.S., similar opposition prevents new lines from gain-
ing approval. 

To some experts, therefore,  dunkelflauten  make 
wind and solar energy look risky. For example, grid 
simulations done in 2018 by energy modelers at the 
Massachusetts Institute of Technology project an 
exponential rise in costs as grids move toward 100 
percent renewable energy. That is because they 
assumed big, expensive batteries would have to be 
installed and kept charged at all times, even though 
they might be used only for a few scarce days or even 
hours a year. 

A California-based team of academics reached a 
similar conclusion in 2018, finding 
that even with big transmission lines 
and batteries, solar and wind power 
could feasibly supply only about 
80  percent of U.S. electricity needs. 
Other power sources will definitely be 
needed, said team member Ken Calde-
ira, a climate scientist at the Carnegie 
Institution for Science, when the study 
was released. 

Certain European experts say the 
M.I.T. and California studies are too 
myopic. For several decades European 
researchers have been zooming out 
from the power grid to a larger view, considering the 
full spectrum of energy used in modern society. Pio-
neered by Roskilde University physicist Bent Sørensen 
and several Danish protégés, such “integrated energy 
systems” studies combine simulations for electric 
grids, natural gas and hydrogen distribution networks, 
transportation systems, heavy industries and central 
heating supply. 

The models show that coupling those sectors pro-
vides operational flexibility, and hydrogen is a power-
ful way to do that. In this view, a 100 percent renew-
able electric grid could succeed if hydrogen is used to 
store energy to cover the  dunkelflauten  and without 
the price jump seen in M.I.T.’s projections. 

Some U.S. grid studies ruled out hydrogen energy 
storage because it is costly today. But other modelers 
say that thinking is flawed. For example, many grid 
studies being published about a decade ago down-
played solar energy because it was expensive at the 
time—this was a mistaken assumption, given solar’s 
dramatic cost decreases ever since. European simula-
tions such as Brown’s take into account anticipated 
cost reductions when they compute the cheapest ways 
to eliminate carbon emissions. What emerges is a 
buildout of electrolyzers that cuts the cost of renew-
able hydrogen. 

In the models, electrolyzers scale up first to replace 
hydrogen that is manufactured from natural gas, used 
by chemical plants and oil refineries in various pro-
cessing steps. Manufacturing “gray” hydrogen (as 
energy experts call it) releases more than 800 million 
metric tons of carbon dioxide a year worldwide—as 
much as the U.K. and Indonesia’s total emissions com-
bined, according to the International Energy Agency. 
Replacing gray hydrogen with renewable hydrogen 
shrinks the carbon footprint of hydrogen used by 
industry. Some hydrogen could also replace natural 
gas and diesel fuel consumed by heavy trucks, buses 
and trains. Although fuel cells struggle to compete 
with batteries for cars, they may be more practical for 
heavier vehicles; truck developer Nikola Motor Com-
pany says the tractor-trailer rigs it is commercializing 
will travel about 800 to 1,200 kilometers (500 to 750 
miles) on a full fuel cell, depending on the various 
equipment and hauling factors.

If industry and heavy transport embrace renew-
able hydrogen, regional hydrogen networks could 
emerge to distribute it, and they could also supply the 
carbon-free gas to power plants that back up electric-
ity grids. That is what happens in integrated energy 
simulations: as more renewable hydrogen is created 
and consumed, mass-distribution networks develop 
that store months’ worth of the gas in large tanks or 
underground caverns, much as natural gas is stored 
today, at a cost that is cheaper than storing electricity 
in batteries. “Once you acknowledge that hydrogen is 
important for the other sectors, you get the long-term 
storage for the power sector as a sort of by-product,” 
Brown says.

That perspective comes alive in simulations by 
Christian Breyer of Finland’s LUT University. In his 
team’s latest 100 percent renewable energy scenarios, 
published in 2019 with the Energy Watch Group, an 
international group of scientists and parliamentari-
ans, power plants burning stored hydrogen fire up to 
fill the grid’s void during the deepest  dunkelflauten. 
 “They are a final resort,” Breyer says. “Without these 
large turbines, we would not have a stable energy sys-
tem during certain hours of the year.” 

In Breyer’s model, less than half of the wind and 
solar energy required to make and store hydrogen 

The cost of electrolyzers may be the 
biggest challenge facing the renewable 
hydrogen future. To make inroads  
in industry, producing the gas needs  
to drop from about $4 or more  
per kilogram today to $2 or less. 
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gets converted back into electricity, a big loss, and the 
hydrogen turbine generators sit idle for all but a few 
weeks every year. But the poor efficiency of the hydro-
gen-to-electricity conversion does not break the bank, 
because this pathway is used infrequently. Breyer says 
the scheme is the most economical solution for the 
energy system writ large, and it is not that different 
from how many grids use natural gas–fired plants 
today. “For decades there have been power plants that 
are switched on only once every few years,” he says. 

REPURPOSED PIPELINES 
even Though Today’s  renewable hydrogen generation 
is meager, Europe is counting on hydrogen to decar-
bonize its energy systems. The European Commission 
anticipates renewable energy rising to greater than 
80 percent of Europe’s power supply in 2050, support-
ed by more than 50 gigawatts of electrolyzers—the 
capacity of ap  prox i mate ly 50 nuclear power plants. 
Member states are setting their own goals, too. France 
is calling for its hy  drogen-consuming industries to 
switch to 10 percent renewable hydrogen by 2022 and 
20 to 40 percent by 2027. 

These goals will be difficult to reach without poli-
cies that encourage entrepreneurial firms to jump-
start mass production of electrolyzers. Blending hy -
drogen into natural gas pipelines is a place to start 
because it uses existing infrastructure. Engineers had 
long assumed that molecular hydrogen—the smallest 
molecule and highly reactive—would degrade or 
escape from existing natural gas pipes. But recent 
research shows that blending of up to 20 to 25 percent 
hydrogen can be done without seeping from or hurt-
ing such pipes. European countries permit blending, 
and firms in Italy, Germany, the U.K., and elsewhere 
are injecting hydrogen at dozens of sites to help fuel 
customers’ heaters, cookstoves and other appliances, 
which do not need alterations as long as the hydrogen 

content stays below about 25 percent. 
Engie has been blending at Cap-

pelle-la-Grande for more than a year 
without incident or opposition, ac -
cording to project manager Hélène 
Pierre. She says that public accep-
tance is helped by extensive monitor-
ing that shows that homes using the 
blend have cleaner air; adding hydro-
gen improves gas combustion in ap -
pliances, she notes, trimming levels of 
pollutants such as carbon monoxide 
that are created when natural gas 
burns incompletely.

Europe’s next wave of renewable 
hydrogen projects could push pro-
duction to a larger scale. Industrial 
consortia in France and Germany are 
seeking financing and authorization 
for 100-megawatt electrolyzers, 10 
times larger than the biggest in oper-

ation. Two huge electrolyzer projects are vying for 
government support to boost a regional hydrogen 
economy around Lingen, a city in northwestern Ger-
many that is home to a pair of oil refineries. One proj-
ect that involves a large utility called Enertrag and 
several of Germany’s biggest energy and engineering 
firms could provide a blueprint for a  nationwide 
hydrogen network. The project takes advantage of 
existing gas infrastructure but not via blending. 
Instead the idea is to repurpose spare gas pipelines to 
deliver renewable hydrogen to the local refineries, as 
well as a power plant and even a planned filling sta-
tion for fuel-cell vehicles. “Our idea is to build up a 
100 percent hydrogen gas grid,” says Frank Heun-
emann, who is managing director at Nowega, one of 
the partners on the project and the region’s gas-net-
work operator.

Nowega can reuse some empty pipes because the 
region has two natural gas networks. One carries stan-
dard natural gas that is nearly all methane. The other 
was originally built to deliver local natural gas that 
was high in hydrogen sulfide, and hydrogen can make 
some steel pipes brittle. Nowega is phasing out the 
local gas, leaving empty steel pipes that Heunemann 
says should be able to endure any reactivity with pure 
hydrogen. European energy supplier RWE will build 
the consortium’s main electrolyzer and plans to burn 
some of the hydrogen output at its Lingen power  
station. Engineering giant Siemens intends to opti-
mize one of the station’s four gas turbines to handle 
pure hydrogen.

The consortium is thinking about expansion as 
well. Lingen is about 48 kilometers from underground 
salt caverns created to store natural gas. Stocking 
some of Lingen’s hydrogen, more than 1,000 meters 
deep in one of the caverns, could be a logical next step, 
Heunemann says. (Hydrogen is already stored en 
masse in caverns in Texas and the U.K.)

ENGINEER 
 checks pipes 
that distribute 
hydrogen made 
with renewable 
energy in Ham ­
burg, Germany.
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Nowega also envisions a 3,200-kilometer pipeline 
network that could reach most of Germany’s steel 
plants, refineries and chemical producers. The plan 
centers on repurposing natural gas pipes that were 
originally built to carry hydrogen-rich “town gas” pro-
duced from coal, which was common in Europe until 
the 1960s. Pipelines that historically coped with 50 per-
cent hydrogen should also be fine “to use for 100 per-
cent hydrogen,” Heunemann says.

THE FUTURE IS TENTATIVE
europe’s growing inTeresT  in renewable hydrogen is 
not unique. Japan is planning a multidecadal shift to 
a “hydrogen society” that has been baked into official 
energy policy since 2014. Meeting one of Japan’s first 
goals—demonstrating technology to efficiently import 
hydrogen—is set to begin in 2020 with tanker ship-
ments of gray hydrogen from Brunei, a tiny gas-rich 
nation nestled in Borneo. Australia’s rival political 
parties are developing competing plans to export 
hydrogen to Japan. In December 2019 energy minis-
ters across Australia’s states and territories adopted a 
national hydrogen strategy, and the national govern-
ment announced a $370-million (Australian; $252 
million U.S.) hydrogen-stimulus package. 

Even in the U.S., there are signs of renewed inter-
est. The federal government is once again setting 
goals for hydrogen technologies, some energy firms 
are investing and a few states are offering support. 
Los Angeles may be a leader. “L.A.’s Green New Deal,” 
unveiled by Mayor Eric Garcetti in April 2019, com-
mits the city to reach 80 percent renewable electricity 
by 2030 and 100 percent by 2050. The mayor is ad -
vanc ing plans to build solar farms and is also con-
structing a new natural gas–fired power plant to 
ensure the city has a backup electricity source. That 
plant could be converted to burn renewable hydrogen; 
about 125 kilometers of pipelines already push gray 
hydrogen to the area’s refineries. And fuel cells are 
vying with batteries in plans to repower the roughly 
16,000 trucks that haul freight at the region’s ports. 
Fueling those trucks with hydrogen instead of diesel 
could significantly improve L.A.’s hazy skies. 

Brouwer says the entire state needs to think more 
deeply about energy as it seeks to eliminate carbon 
emissions. The state may be wasting more than eight 
terawatt-hours of renewable energy potential every 
year by 2025, according to projections by Lawrence 
Berkeley National Laboratory—energy that Brouwer 
says California should instead be socking away as 
hydrogen to clean up its refineries and to meet soar-
ing electricity demand during summer heat waves. 

Other experts agree that hydrogen can connect 
those dots. A recent study by the Energy Futures Initia-
tive, a think tank led by former M.I.T. nuclear physicist 
Ernest Moniz, who was Obama’s second energy secre-
tary, calls on California to tap the “enormous value” 
offered by renewable hydrogen and other low-carbon 
fuels. The study concludes that California’s carbon- 

cutting goals may be impossible to meet without them.
A host of potential problems could still stall or pre-

vent the scale-up of hydrogen infrastructure in Cali-
fornia, Europe, and elsewhere. A persistent issue is 
public anxiety. Hydrogen is extremely flammable, and 
accidents happen. Last summer a faulty valve caused 
a hydrogen explosion at a Norwegian filling station 
for fuel-cell cars. Concrete blast walls minimized in -
juries, but media reports immediately questioned 
whether hydrogen energy would survive the incident. 
In November 2019 California governor Gavin Newsom 
asked the state’s public utility commission to expedite 
closure of an underground gas-storage facility, where 
a four-month leak of natural gas four years earlier had 
prompted the evacuation of thousands of families. 

All energy options have their risks, and community 
opposition complicates many paths to carbon-free 
energy. In many places, the public is not enamored 
with nuclear energy, transmission lines or wind tur-
bines. The cost of electrolyzers may be the biggest 
challenge facing the renewable hydrogen future, how-
ever. To begin replacing gray hydrogen in industry, 
the cost of producing renewable hydrogen needs to 
drop from about $4 or more per kilogram today to $2 
or less. Several studies indicate that could happen by 
2030 if electrolyzer costs continue to fall as they have 
in the past few years. 

The studies also suggest that pattern may not 
emerge without government incentives. In a recent 
report, the International Energy Agency notes that 
hydrogen needs the same kind of government support 
that fostered early deployments of solar and wind 
power—industries that now attract more than $100 
billion in annual investment worldwide. Those exam-
ples, the agency writes, show that “policy and technol-
ogy innovation have the power to build global clean 
energy industries.” 

Improved technology may be arriving. A new class 
of electrolyzers is entering the market—solid oxide 
electrolyzers that produce almost 30  percent more 
hydrogen than the industry-leading proton-exchange 
membrane electrolyzers, which Engie is using. Former 
energy secretary and doubter Chu, now a professor at 
Stanford University, is working on a novel electrolyzer 
that relies on tighter spacing of components and oth-
er tricks to produce hydrogen faster with less energy. 
According to Chu, the changes could make “a huge dif-
ference in operating cost.” It’s just one more reason, 
Chu says, why he is warming up to hydrogen. 
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In December 2003, to commemorate the 100th anniversary of the first 
flight of the Wright brothers, the  New York Times  ran a story entitled 
“Staying Aloft; What Does Keep Them Up There?” The point of the 
piece was a simple question: What keeps planes in the air? To answer  
it, the  Times  turned to John D. Anderson, Jr., curator of aerodynamics  
at the National Air and Space Museum and author of several textbooks 
in the field. 

What Anderson said, however, is that there is actu-
ally no agreement on what generates the aerodynamic 
force known as lift. “There is no simple one-liner an-
swer to this,” he told the  Times.  People give different 
answers to the question, some with “religious fervor.” 
More than 15 years after that pronouncement, there 
are still different accounts of what generates lift, each 
with its own substantial rank of zealous defenders. At 
this point in the history of flight, this situation is 
slightly puzzling. After all, the natural processes of 
evolution, working mindlessly, at random and without 
any understanding of physics, solved the mechanical 
problem of aerodynamic lift for soaring birds eons ago. 
Why should it be so hard for scientists to explain what 
keeps birds, and airliners, up in the air? 

Adding to the confusion is the fact that accounts of 
lift exist on two separate levels of abstraction: the 
technical and the nontechnical. They are complemen-
tary rather than contradictory, but they differ in their 
aims. One exists as a strictly mathematical theory, a 
realm in which the analysis medium consists of equa-
tions, symbols, computer simulations and numbers. 
There is little, if any, serious disagreement as to what 
the appropriate equations or their solutions are. The 
objective of technical mathematical theory is to make 
accurate predictions and to project results that are 
useful to aeronautical engineers engaged in the com-
plex business of designing aircraft. 

But by themselves, equations are not explanations, 
and neither are their solutions. There is a second, non-
technical level of analysis that is intended to provide us 
with a physical, commonsense explanation of lift. The 
objective of the nontechnical approach is to give us an 
intuitive understanding of the actual forces and factors 
that are at work in holding an airplane aloft. This ap-
proach exists not on the level of numbers and equa-

tions but rather on the level of concepts and principles 
that are familiar and intelligible to nonspecialists. 

It is on this second, nontechnical level where the 
controversies lie. Two different theories are commonly 
proposed to explain lift, and advocates on both sides 
argue their viewpoints in articles, in books and online. 
The problem is that each of these two nontechnical 
theories is correct in itself. But neither produces a 
complete explanation of lift, one that provides a full 
accounting of all the basic forces, factors and physical 
conditions governing aerodynamic lift, with no issues 
left dangling, unexplained or unknown. Does such a 
theory even exist? 

TWO COMPETING THEORIES
by far the most popular  explanation of lift is Bernoul-
li’s theorem, a principle identified by Swiss mathema-
tician Daniel Bernoulli in his 1738 treatise,  Hydrody-
namica.  Bernoulli came from a family of mathemati-
cians. His father, Johann, made contributions to the 
calculus, and his Uncle Jakob coined the term “inte-
gral.” Many of Daniel Bernoulli’s contributions had to 
do with fluid flow: Air is a fluid, and the theorem asso-
ciated with his name is commonly expressed in terms 
of fluid dynamics. Stated simply, Bernoulli’s law says 
that the pressure of a fluid decreases as its velocity in-
creases, and vice versa. 

Bernoulli’s theorem attempts to explain lift as a 
consequence of the curved upper surface of an airfoil, 
the technical name for an airplane wing. Because of 
this curvature, the idea goes, air traveling across the 
top of the wing moves faster than the air moving along 
the wing’s bottom surface, which is flat. Bernoulli’s 
theorem says that the increased speed atop the wing  
is associated with a region of lower pressure there, 
which is lift. 

I N  B R I E F

On a strictly  math-
ematical level, engi-
neers know how to 
design planes that 
will stay aloft. But 
equations don’t 
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namic lift occurs. 
There are two com-
peting theories that 
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BUT.. .
Taken by itself, the principle of action  
and reaction still fails to explain the lower 
pressure atop the wing, which exists  
in that region irrespective of whether  
the airfoil is cambered or not. 

NEWTON’S THIRD LAW 
Air has mass. Therefore, Newton’s third law would say that 
the wing’s downward push results in an equal and 
opposite push back upward. This Newtonian account of lift 
applies to wings of any shape, curved or flat, symmetrical 
or not, and it holds for aircraft flying inverted or right-side 
up (the critical feature being a suitable angle of attack).  
For these reasons, it is a more comprehensive and 
universally applicable explanation of lift than Bernoulli’s. 

Doesn’t explain why 
planes can fly inverted 
or with flat wings. 

Doesn’t explain why two 
particles must reach the 
trailing end at the same 
time, and as it turns out, 
the air across the top 
moves even faster than 
its “paired” particle. 

BERNOULLI’S THEOREM 
As applied to an airplane wing—technically called an 
airfoil—Bernoulli’s theorem attempts to explain lift as  
a consequence of the wing’s curved upper surface. 
The idea is that because of this curvature, the air traveling 
across the top of the wing moves faster than the air 
moving along the wing’s bottom surface, which 
is flat. Bernoulli’s theorem says that the 
increased speed atop the wing is 
associated with a region of lower 
pressure there, which is lift. 

Doesn’t fully address 
lower-pressure zone 
above wing.

BUT.. .
Although Bernoulli’s theorem is largely correct, there are 
several reasons that the principle does not constitute a 
complete explanation of lift. It is a fact of experience that 
air moves faster across a curved surface, but the theorem 
alone does not explain why this is so or why the higher 
velocity atop the wing brings lower pressure along with it. 
And practically speaking, an airplane with wings that have 
a curved upper surface—or even flat surfaces on top and 
bottom—is capable of flying inverted, so long as the airfoil 
meets the oncoming wind at an appropriate angle. 

Air below wing is pushed down,  
resulting in an equal and opposite force: lift 

Doesn’t fully address 
lower-pressure zone 
above wing.

The Flawed Classics
On a commonsense, everyday basis,  two theories have been advanced to 
explain what keeps an airplane aloft. One is Bernoulli’s theorem, which asso-
ciates lift with the area of higher speed and lower pressure atop the wing. 
The other is the Newtonian principle of action and reaction, which explains 

lift as an upward push on the wing from the moving air below. Each of 
these theories is correct in its way, and neither one contradicts 

the other, although proponents of each theory argue their 
viewpoints with a zeal bordering on mania. Still, neither 

theory by itself provides a complete explanation of lift, 
nor do both of them together, because each leaves 

something out. A complete explanation must 
account for all the forces and factors acting on the 
wing, with no issue, major or minor, left dangling. 

Increased speed  
of air above wing 

Slower speed of 
air below wing 

High angle of attackLow angle of attack
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Mountains of empirical data from streamlines (lines of 
smoke particles) in wind-tunnel tests, laboratory experi-
ments on nozzles and Venturi tubes, and so on provide 
overwhelming evidence that as stated, Bernoulli’s princi-
ple is correct and true. Nevertheless, there are several rea-
sons that Bernoulli’s theorem does not by itself constitute 
a  complete  explanation of lift. Although it is a fact of expe-
rience that air moves faster across a curved surface, Ber-
noulli’s theorem alone does not explain why this is so. In 
other words, the theorem does not say how the higher ve-
locity above the wing came about to begin with. 

There are plenty of bad explanations for the higher ve-
locity. According to the most common one—the “equal 
transit time” theory—parcels of air that separate at the 
wing’s leading edge must rejoin simultaneously at the 
trailing edge. Because the top parcel travels farther than 
the lower parcel in a given amount of time, it must go fast-
er. The fallacy here is that there is no physical reason that 
the two parcels must reach the trailing edge simultane-
ously. And indeed, they do not: the empirical fact is that 
the air atop moves much faster than the equal transit 
time theory could account for.

There is also a notorious “demonstration” of Bernoulli’s 
principle, one that is repeated in many popular accounts, 
YouTube videos and even some textbooks. It involves hold-
ing a sheet of paper horizontally at your mouth and blow-
ing across the curved top of it. The page rises, supposedly 
illustrating the Bernoulli effect. The opposite result ought 
to occur when you blow across the bottom of the sheet: 
the velocity of the moving air below it should pull the page 
downward. Instead, paradoxically, the page rises. 

The lifting of the curved paper when flow is applied to 
one side “is not because air is moving at different speeds 
on the two sides,” says Holger Babinsky, a professor of 
aerodynamics at the University of Cambridge, in his arti-
cle  “How Do Wings Work?”  To demonstrate this, blow 
across a straight piece of paper—for example, one held so 
that it hangs down vertically—and witness that the paper 
does not move one way or the other, because “the pres-
sure on both sides of the paper is the same, despite the ob-
vious difference in velocity.” 

The second shortcoming of Bernoulli’s theorem is that 
it does not say how or why the higher velocity atop the 
wing brings lower pressure, rather than higher pressure, 
along with it. It might be natural to think that when a 
wing’s curvature displaces air upward, that air is com-
pressed, resulting in increased pressure atop the wing. 
This kind of “bottleneck” typically slows things down in 
ordinary life rather than speeding them up. On a highway, 
when two or more lanes of traffic merge into one, the cars 
involved do not go faster; there is instead a mass slow-
down and possibly even a traffic jam. Air molecules flow-
ing atop a wing do not behave like that, but Bernoulli’s 
theorem does not say why not. 

The third problem provides the most decisive argu-
ment against regarding Bernoulli’s theorem as a complete 
account of lift: An airplane with a curved upper surface is 
capable of flying inverted. In inverted flight, the curved 
wing surface becomes the bottom surface, and according 

New Ideas of Lift 
Today’s scientific approaches  to aircraft design are determined 
by computational fluid dynamics (CFD) simulations, as well as 
equations that take full account of the actual viscosity of real 
air. Although we still do not have a singular and satisfying physi-
cal, qualitative explanation of lift, some recent attempts may 
have gotten us a bit closer. 

CO-DEPENDENCY OF LIFT’S FOUR ELEMENTS 
The four critical components ( shown ) in aerodynamicist Doug McLean’s 
explanation of lift support one another in a reciprocal cause-and-effect 
relation. This interrelation constitutes the novel fifth element of McLean’s 
explanation, which is rooted in Newton’s second law of motion: force equals 
mass times acceleration. The acceleration of a body—or in this case, a parcel 
of fluid—is proportional to the force exerted on it. Each parcel affecting the 
others brings the elements into existence, sustaining flight. 

HOW LOW PRESSURE FORMS ABOVE THE WING 
Mark Drela, an expert on fluid dynamics, has attemped to address what 
evaded Newton and Bernoulli: how the low-pressure zone, or partial vacuum, 
above the wing comes into existence. The air above the wing momentarily 
flows straight back A  , forming a void or vacuum. This vacuum will then 
strongly pull the air back down B  , filling in and thus eliminating most—but 
not all—of the vacuum. Just enough vacuum remains to pull the air into the 
curved path that follows the wing C  .

BUT.. . 
Although McLean says the reduced pressure above and increased pressure 
below result from the airfoil being “completely surrounded by flowing air,” 
this doesn’t explain how the reduced pressure up top got there initially. 

Vacuum

       Air pulled 
down into void

Low-  
pressure 
zone

A
CB
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to Bernoulli’s theorem, it then generates reduced pres-
sure  below  the wing. That lower pressure, added to the 
force of gravity, should have the overall effect of pull-
ing the plane downward rather than holding it up. 
Moreover, aircraft with symmetrical airfoils, with 
equal curvature on the top and bottom—or even with 
flat top and bottom surfaces—are also capable of flying 
inverted, so long as the airfoil meets the oncoming 
wind at an appropriate angle of attack. This means 
that Bernoulli’s theorem alone is insufficient to explain 
these facts. 

The other theory of lift is based on Newton’s third 
law of motion, the principle of action and reaction. 
The theory states that a wing keeps an airplane up by 
pushing the air down. Air has mass, and from New-
ton’s third law it follows that the wing’s downward 
push results in an equal and opposite push back up-
ward, which is lift. The Newtonian account applies to 
wings of any shape, curved or flat, symmetrical or not. 
It holds for aircraft flying inverted or right-side up. 
The forces at work are also familiar 
from ordinary experience—for exam-
ple, when you stick your hand out of a 
moving car and tilt it upward, the air 
is deflected downward, and your hand 
rises. For these reasons, Newton’s 
third law is a more universal and com-
prehensive explanation of lift than 
Bernoulli’s theorem.

But taken by itself, the principle of 
action and reaction also fails to ex-
plain the lower pressure atop the wing, 
which exists in that region irrespec-
tive of whether the airfoil is cambered. 
It is only when an airplane lands and comes to a halt 
that the region of lower pressure atop the wing disap-
pears, returns to ambient pressure, and becomes the 
same at both top and bottom. But as long as a plane is 
flying, that region of lower pressure is an inescapable 
element of aerodynamic lift, and it must be explained. 

HISTORICAL UNDERSTANDING 
neither bernoulli nor newton  was consciously trying 
to explain what holds aircraft up, of course, because 
they lived long before the actual development of me-
chanical flight. Their respective laws and theories 
were merely repurposed once the Wright brothers flew, 
making it a serious and pressing business for scientists 
to understand aerodynamic lift. 

Most of these theoretical accounts came from Eu-
rope. In the early years of the 20th century, several 
British scientists advanced technical, mathematical 
accounts of lift that treated air as a perfect fluid, mean-
ing that it was incompressible and had zero viscosity. 
These were unrealistic assumptions but perhaps un-
derstandable ones for scientists faced with the new 
phenomenon of controlled, powered mechanical flight. 
These assumptions also made the underlying mathe-
matics simpler and more straightforward than they 

otherwise would have been, but that simplicity came 
at a price: however successful the accounts of airfoils 
moving in ideal gases might be mathematically, they 
remained defective empirically. 

In Germany, one of the scientists who applied 
themselves to the problem of lift was none other than 
Albert Einstein. In 1916 Einstein published a short 
piece in the journal  Die Naturwissenschaften  entitled 
“Elementary Theory of Water Waves and of Flight,” 
which sought to explain what accounted for the carry-
ing capacity of the wings of flying machines and soar-
ing birds. “There is a lot of obscurity surrounding 
these questions,” Einstein wrote. “Indeed, I must con-
fess that I have never encountered a simple answer to 
them even in the specialist literature.”

Einstein then proceeded to give an explanation 
that assumed an incompressible, frictionless fluid—
that is, an ideal fluid. Without mentioning Bernoulli by 
name, he gave an account that is consistent with Ber-
noulli’s principle by saying that fluid pressure is great-

er where its velocity is slower, and vice versa. To take 
advantage of these pressure differences, Einstein pro-
posed an airfoil with a bulge on top such that the 
shape would increase airflow velocity above the bulge 
and thus decrease pressure there as well. 

Einstein probably thought that his ideal-fluid anal-
ysis would apply equally well to real-world fluid flows. 
In 1917, on the basis of his theory, Einstein designed an 
airfoil that later came to be known as a cat’s-back wing 
because of its resemblance to the humped back of a 
stretching cat. He brought the design to aircraft man-
ufacturer LVG (Luftverkehrsgesellschaft) in Berlin, 
which built a new flying machine around it. A test pilot 
reported that the craft waddled around in the air like 
“a pregnant duck.” Much later, in 1954, Einstein him-
self called his excursion into aeronautics a “youthful 
folly.” The individual who gave us radically new theo-
ries that penetrated both the smallest and the largest 
components of the universe nonetheless failed to 
make a positive contribution to the understanding of 
lift or to come up with a practical airfoil design. 

TOWARD A COMPLETE THEORY OF LIFT
contemporary scientific approaches  to aircraft design 
are the province of computational fluid dynamics (CFD) 

It is as if these four components of lift 
collectively bring themselves into 
existence, and sustain themselves,  
by simultaneous acts of mutual creation 
and causation. There seems to be  
a hint of magic in this synergy. 
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simulations and the so-called Navier-Stokes equations, 
which take full account of the actual viscosity of real 
air. The solutions of those equations and the output of 
the CFD simulations yield pressure-distribution pre-
dictions, airflow patterns and quantitative results that 
are the basis for today’s highly advanced aircraft de-
signs. Still, they do not by themselves give a physical, 
qualitative explanation of lift. 

In recent years, however, leading aerodynamicist 
Doug McLean has attempted to go beyond sheer math-
ematical formalism and come to grips with the physi-
cal cause-and-effect relations that account for lift in all 
of its real-life manifestations. McLean, who spent 
most of his professional career as an engineer at Boe-
ing Commercial Airplanes, where he specialized in 
CFD code development, published his new ideas in the 
2012 text  Understanding Aerodynamics: Arguing from 
the Real Physics. 

Considering that the book runs to more than 500 
pages of fairly dense technical analysis, it is surprising 
to see that it includes a section (7.3.3) entitled “A Basic 
Explanation of Lift on an Airfoil, Accessible to a Non-
technical Audience.” Producing these 16 pages was not 
easy for McLean, a master of the subject; indeed, it 
was “probably the hardest part of the book to write,” 
the author says. “It saw more revisions than I can 
count. I was never entirely happy with it.” 

McLean’s complex explanation of lift starts with 
the basic assumption of all ordinary aerodynamics: 
the air around a wing acts as “a continuous material 
that deforms to follow the contours of the airfoil.” That 
deformation exists in the form of a deep swath of fluid 
flow both above and below the wing. “The airfoil af-
fects the pressure over a wide area in what is called a 
 pressure field, ” McLean writes. “When lift is produced, 

a diffuse cloud of low pressure always forms above the 
airfoil, and a diffuse cloud of high pressure usually 
forms below. Where these clouds touch the airfoil they 
constitute the pressure difference that exerts lift on 
the airfoil.” 

The wing pushes the air down, resulting in a down-
ward turn of the airflow. The air above the wing is sped 
up in accordance with Bernoulli’s principle. In addi-
tion, there is an area of high pressure below the wing 
and a region of low pressure above. This means that 
there are four necessary components in McLean’s ex-
planation of lift: a downward turning of the airflow, an 
increase in the airflow’s speed, an area of low pressure 
and an area of high pressure. 

But it is the interrelation among these four ele-
ments that is the most novel and distinctive aspect of 
McLean’s account. “They support each other in a recip-
rocal cause-and-effect relationship, and none would ex-
ist without the others,” he writes. “The pressure differ-
ences exert the lift force on the airfoil, while the down-
ward turning of the flow and the changes in flow speed 
sustain the pressure differences.” It is this interrelation 
that constitutes a fifth element of McLean’s explana-
tion: the reciprocity among the other four. It is as if 
those four components collectively bring themselves 
into existence, and sustain themselves, by simultane-
ous acts of mutual creation and causation. 

There seems to be a hint of magic in this synergy. 
The process that McLean describes seems akin to four 
active agents pulling up on one another’s bootstraps  
to keep themselves in the air collectively. Or, as he ac-
knowledges, it is a case of “circular cause-and-effect.” 
How is it possible for each element of the interaction 
to sustain and reinforce all of the others? And what 
causes this mutual, reciprocal, dynamic interaction? 

WATER- channel 
test at nasa 
Ames Fluid 
Mechanics Lab   
uses fluorescent 
dye to visualize 
the flow field 
over an airplane 
wing. The 
stream lines, 
moving from  
left to right and 
curving as they 
encounter the 
wing, help  
to illustrate the 
physics of lift.
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McLean’s answer: Newton’s second law of motion. 
Newton’s second law states that the acceleration of a 

body, or a parcel of fluid, is proportional to the force ex-
erted on it. “Newton’s second law tells us that when a 
pressure difference imposes a net force on a fluid parcel, 
it must cause a change in the speed or direction (or 
both) of the parcel’s motion,” McLean explains. But re-
ciprocally, the pressure difference depends on and ex-
ists because of the parcel’s acceleration. 

Aren’t we getting something for nothing here? 
McLean says no: If the wing were at rest, no part of 
this cluster of mutually reinforcing activity would ex-
ist. But the fact that the wing is moving through the air, 
with each parcel affecting all of the others, brings 
these co-dependent elements into existence and sus-
tains them throughout the flight. 

TURNING ON THE RECIPROCITY OF LIFT 
soon after the publication  of  Understanding Aerody-
namics,  McLean realized that he had not fully ac-
counted for all the elements of aerodynamic lift, be-
cause he did not explain convincingly what causes the 
pressures on the wing to change from ambient. So, in 
November 2018, McLean published a two-part article 
in  The Physics Teacher  in which he proposed “a com-
prehensive physical explanation” of aerodynamic lift. 

Although the article largely restates McLean’s earli-
er line of argument, it also attempts to add a better ex-
planation of what causes the pressure field to be non-
uniform and to assume the physical shape that it does. 
In particular, his new argument introduces a mutual 
interaction at the flow field level so that the nonuni-
form pressure field is a result of an applied force, the 
downward force exerted on the air by the airfoil. 

Whether McLean’s section 7.3.3 and his follow-up 
article are successful in providing a complete and cor-
rect account of lift is open to interpretation and debate. 
There are reasons that it is difficult to produce a clear, 
simple and satisfactory account of aerodynamic lift. 
For one thing, fluid flows are more complex and harder 
to understand than the motions of solid objects, espe-
cially fluid flows that separate at the wing’s leading 
edge and are subject to different physical forces along 
the top and bottom. Some of the disputes regarding lift 
involve not the facts themselves but rather how those 
facts are to be interpreted, which may involve issues 
that are impossible to decide by experiment. 

Nevertheless, there are at this point only a few out-
standing matters that require explanation. Lift, as you 
will recall, is the result of the pressure differences be-
tween the top and bottom parts of an airfoil. We al-
ready have an acceptable explanation for what hap-
pens at the bottom part of an airfoil: the oncoming air 
pushes on the wing both vertically (producing lift) and 
horizontally (producing drag). The upward push exists 
in the form of higher pressure below the wing, and this 
higher pressure is a result of simple Newtonian action 
and reaction. 

Things are quite different at the top of the wing, 

however. A region of lower pressure exists there that is 
also part of the aerodynamic lifting force. But if nei-
ther Bernoulli’s principle nor Newton’s third law ex-
plains it, what does? We know from streamlines that 
the air above the wing adheres closely to the down-
ward curvature of the airfoil. But why must the parcels 
of air moving across the wing’s top surface follow its 
downward curvature? Why can’t they separate from it 
and fly straight back? 

Mark Drela, a professor of fluid dynamics at the 
Massachusetts Institute of Technology and author of 
 Flight Vehicle Aerodynamics,  offers an answer: “If the 
parcels momentarily flew off tangent to the airfoil top 
surface, there would literally be a vacuum created be-
low them,” he explains. “This vacuum would then suck 
down the parcels until they mostly fill in the vacuum, 
i.e., until they move tangent to the airfoil again. This is 
the physical mechanism which forces the parcels to 
move along the airfoil shape. A slight partial vacuum 
remains to maintain the parcels in a curved path.” 

This drawing away or pulling down of those air 
parcels from their neighboring parcels above is what 
creates the area of lower pressure atop the wing. But 
another effect also accompanies this action: the high-
er airflow speed atop the wing. “The reduced pressure 
over a lifting wing also ‘pulls horizontally’ on air par-
cels as they approach from upstream, so they have a 
higher speed by the time they arrive above the wing,” 
Drela says. “So the increased speed above the lifting 
wing can be viewed as a side effect of the reduced 
pressure there.”

But as always, when it comes to explaining lift on a 
nontechnical level, another expert will have another 
answer. Cambridge aerodynamicist Babinsky says, “I 
hate to disagree with my esteemed colleague Mark 
Drela, but if the creation of a vacuum were the expla-
nation, then it is hard to explain why sometimes the 
flow does nonetheless separate from the surface. But 
he is correct in everything else. The problem is that 
there is no quick and easy explanation.” 

Drela himself concedes that his explanation is un-
satisfactory in some ways. “One apparent problem is 
that there is no explanation that will be universally ac-
cepted,” he says. So where does that leave us? In effect, 
right where we started: with John D. Anderson, who 
stated, “There is no simple one-liner answer to this.” 
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Fully autonomous weapons systems (AWSs) may be 
operating in war theaters even as you read this article, 
however. Turkey has announced plans to deploy a fleet 
of autonomous Kargu quadcopters against Syrian forc-
es in early 2020, and Russia is also developing aerial 
swarms for that region. Once launched, an AWS finds, 
tracks, selects and attacks targets with violent force, all 
without human supervision. 

Autonomous weapons are not self-aware, humanoid 
“Terminator” robots conspiring to take over; they are 
computer-controlled tanks, planes, ships and subma-
rines. Even so, they represent a radical change in the na-
ture of warfare. Humans are outsourcing the decision to 
kill to a machine—with no one watching to ascertain 
the legitimacy of an attack before it is carried out. Since 
the mid-2000s, when the U.S. Department of Defense 
triggered a global artificial-intelligence arms race by 
signaling its intent to develop autonomous weapons for 
all branches of the armed forces, every major power and 
several lesser ones have been striving to acquire these 
systems. According to U.S. Secretary of Defense Mark Es-
per, China is already exporting AWSs to the Middle East. 

The military attractions of autonomous weapons are 
manifold. For example, the U.S. Navy’s  X-47B, an un-
manned fighter jet that can land and take off from air-
craft carriers even in windy conditions and refuel in the 
air, will have 10 times the reach of piloted fighter jets. 
The U.S. has also developed an unmanned transoceanic 
warship called  Sea Hunter,  to be accompanied by a flo-
tilla of DASH (Distributed Agile Submarine Hunting) 
submarines. In January 2019 the  Sea Hunter  traveled 
from San Diego to Hawaii and back, demonstrating its 
suitability for use in the Pacific. Russia is automating its 
state-of-the-art  T-14 Armata tank, presumably for de-
ployment at the European border; meanwhile weapons 

manufacturer Kalashnikov has demonstrated a fully 
automated combat module to be mounted on existing 
weapons systems (such as artillery guns and tanks) to 
enable them to sense, choose and attack targets. Not to 
be outdone, China is working on AI-powered tanks and 
warships, as well as a supersonic autonomous air-to-air 
combat aircraft called Anjian, or Dark Sword, that can 
twist and turn so sharply and quickly that the g-force 
generated would kill a human pilot. 

Given such fierce competition, the focus is inexora-
bly shifting to ever faster machines and autonomous 
drone swarms, which can overwhelm enemy defenses 
with a massive, multipronged and coordinated attack. 
Much of the push toward such weapons comes from de-
fense contractors eyeing the possibility of large profits, 
but high-ranking military commanders nervous about 
falling behind in the artificial-intelligence arms race 
also play a significant role. Some nations, in particular 
the U.S. and Russia, are looking only at the potential 
military advantages of autonomous systems—a blink-
ered view that prevents them from considering the dis-
turbing scenarios that can unfold when rivals catch up. 

As a roboticist, I recognized the necessity of mean-
ingful human control over weapons systems when I 
first learned of the plans to build AWSs. We are facing 
a new era in warfare, much like the dawn of the atom-
ic age. It does not take a historian to realize that once a 
new class of weapon is in the arsenals of military pow-
ers, its use will incrementally expand, placing human-
kind at risk of conflicts that can barely be imagined to-
day. In 2009 I and three other academics set up the In-
ternational Committee for Robot Arms Control, which 
later teamed up with other nongovernmental organi-
zations (NGOs) to form the Campaign to Stop Killer 
Robots. Now a coalition of 130 NGOs from 60 coun-

In September 2019 a swarm of 18 bomb-laden 
drones and seven cruise missiles overwhelmed 
Saudi Arabia’s advanced air defenses to crash 
into the Abqaiq and Khurais oil fields and their 
processing facilities. The surprisingly sophisticated attack, which 
Yemen’s Houthi rebels claimed responsibility for, halved the nation’s output of 
crude oil and natural gas and forced an increase in global oil prices. The drones 
were likely not fully autonomous, however: they did not communicate with one 
another to pick their own targets, such as specific storage tanks or refinery 
buildings. Instead each drone appears to have been preprogrammed with pre-
cise coordinates to which it navigated over hundreds of kilometers by means 
of a satellite positioning system. 

Noel Sharkey  is 
professor emeritus 
of artificial intelli-
gence and robotics 
at the University of 
Sheffield in England. 
He is a founder and 
chair of the Interna-
tional Committee for 
Robot Arms Control.

I N  B R I E F

Partially autono­
mous weapons   
are already being 
used to defend terri­
tories and installa­
tions against non­
human attackers. 
Several nations  
 are racing to develop 
fully autonomous 
weapons systems, 
which select and 
attack targets—
including people—
without human 
supervision. 
Autonomous drone 
swarms  could soon 
be deployed in war 
theaters. But out­
sourcing the decision 
to kill to computers 
poses unique dan­
gers to humankind. 
A binding inter­
national treaty  to 
ensure meaningful 
human control over 
weapons systems 
becomes more 
essential every day.
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tries, the campaign seeks to persuade the 
United Nations to negotiate a legally bind-
ing treaty that would prohibit the devel-
opment, testing and production of weap-
ons that select targets and attack them 
with violent force without meaningful hu-
man control. 

TIME TO THINK 
The ulTimaTe danger  of systems for war-
fare that take humans out of the decision-
making loop is illustrated by the true story 
of “the man who saved the world.” In 1983 
Lieutenant Colonel Stanislav Petrov was 
on duty at a Russian nuclear early-warn-
ing center when his computer sounded a 
loud alarm and the word “LAUNCH” ap-
peared in bold red letters on his screen—
indications that a U.S. nuclear missile was 
fast approaching. Petrov held his nerve 
and waited. A second launch warning rang 
out, then a third and a fourth. With the 
fifth, the red “LAUNCH” on his screen 
changed to “MISSILE STRIKE.” Time was 
ticking away for the U.S.S.R. to retaliate, 
but Petrov continued his deliberation. 
“Then I made my decision,” Petrov said in a 
BBC interview in 2013. “I would not trust 
the computer.” He reported the nuclear at-
tack as a false alarm—even though he 
could not be certain. As it turned out, the 
onboard computing system on the Soviet 
satellites had misclassified sunlight re-
flecting off clouds as the engines of inter-
continental ballistic missiles. 

This tale illustrates the vital role of de-
liberative human decision-making in 
war: given those inputs, an autonomous 
system would have decided to fire. But 
making the right call takes time. A hundred years’ 
worth of psychological research tells us that if we do 
not take at least a minute to think things over, we will 
overlook contradictory information, neglect ambigui-
ty, suppress doubt, ignore the absence of confirmatory 
evidence, invent causes and intentions, and conform 
with expectations. Alarmingly, an oft-cited rationale 
for AWSs is that conflicts are unfolding too quickly for 
humans to be making the decisions. 

“It’s a lot faster than me,” Bruce Jette, a U.S. Army ac-
quisitions officer, said last October to  Defense News,  re-
ferring to a targeting system for tanks. “I can’t see and 
think through some of the things it can calculate nearly 
as fast as it can.” In fact, speed is a key reason that par-
tially autonomous weapons are already in use for some 
defensive operations, which require that the detection 
of, evaluation of and response to a threat be completed 
within seconds. These systems—variously known as 
SARMO (Sense and React to Military Objects), automat-
ed and automatic weapons systems—include Israel’s 

Iron Dome for protecting the country from rockets and 
missiles; the U.S. Phalanx cannon, mounted on war-
ships to guard against attacks from antiship missiles or 
helicopters; and the German NBS Mantis gun, used to 
shoot down smaller munitions such as mortar shells. 
They are localized, are defensive, do not target humans 
and are switched on by humans in an emergency—
which is why they are not considered fully autonomous. 

The distinction is admittedly fine, and weapons on 
the cusp of SARMO and AWS technology are already in 
use. Israel’s Harpy and Harop aerial drones, for instance, 
are explosive-laden rockets launched prior to an air at-
tack to clear the area of antiaircraft installations. They 
cruise around hunting for radar signals, determine 
whether the signals come from friend or foe and, if the 
latter, dive-bomb on the assumption that the radar is 
connected to an antiaircraft installation. In May 2019 se-
cretive Israeli drones—according to one report, Harops—
blew up Russian-made air-defense systems in Syria. 

These drones are “loitering munitions” and speed 

U.S.  ARSENAL 
of fully autono-
mous weapons 
could include 
Gremlin drones 
( 1 ) and the Sea 
Hunter warship 
( 2 ), to be accom  - 
panied by DASH 
submarines.
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up only when attacking, but several fully autonomous 
systems will range in speed from fast subsonic to su-
personic to hypersonic. For example, the U.S.’s Defense 
Advanced Research Projects Agency ( darpa) has test-
ed the Falcon unmanned hypersonic aircraft at speeds 
around 20 times the speed of sound—approximately 
21,000 kilometers per hour. 

In addition to speed, militaries are pursuing “force 
multiplication”—increases in the destructive capacity of 
a weapons system—by means of autonomous drones 
that cooperate like wolves in a pack, communicating 
with one another to choose and hunt individual targets. 
A single human can launch a swarm of hundreds (or 
even thousands) of armed drones into the air, on the 
land or water, or under the sea. Once the AWS has been 
deployed, the operator becomes at best an observer who 

could abort the attack—if communication links have 
not been broken. 

To this end, the U.S. is developing swarms of fixed-
wing drones such as Perdix and Gremlin, which can 
travel long distances with missiles.  darpa has field-test-
ed the coordination of swarms of aerial quadcopters 
(known for their high maneuverability) with ground ve-
hicles, and the Office of Naval Research has demon-
strated a fleet of 13 boats that can “overwhelm an adver-
sary.” The China Electronics Technology Group, in a 
move that reveals the country’s intentions, has (sepa-
rately) tested a group of 200 fixed-wing drones, as well 
as 56 small drone ships for attacking enemy warships. 
In contrast, Russia seems to be mainly interested in 
tank swarms that can be used for coordinated attacks or 
be laid out to defend national borders.

GAMING THE ENEMY
The peTrov sTory  also shows that although computers 
may be fast, they are often wrong. Even now, with the 
incredible power and speed of modern computing and 
sensor processing, AI systems can err in many unpre-
dictable ways. In 2012 the Department of Defense ac-
knowledged the potential for such computer issues with 
autonomous weapons and asserted the need to mini-
mize human errors, failures in human-machine interac-
tions, malfunctions, degradation of communications 
and coding glitches in software. Apart from these self-
evident safeguards, autonomous systems would also 

have to be protected from subversion by adversaries via 
cyberattacks, infiltration of the industrial supply chain, 
jamming of signals, spoofing (misleading of positioning 
systems) and deployment of decoys. 

In reality, protecting against disruptions by the ene-
my will be extremely difficult, and the consequences of 
these assaults could be dire. Jamming would block com-
munications so that an operator would not be able to 
abort attacks or redirect weapons. It could disrupt coor-
dination between robotic weapons in a swarm and 
make them run out of control. Spoofing, which sends a 
strong false GPS signal, can cause devices to lose their 
way or be guided to crash into buildings. 

Decoys are real or virtual entities that deceive sen-
sors and targeting systems. Even the most sophisticated 
artificial-intelligence systems can easily be gamed. Re-
searchers have found that a few dots or lines cleverly 
added to a sign, in such a way as to be unnoticeable to 
humans, can mislead a self-driving car so that it swerves 
into another lane against oncoming traffic or ignores a 
stop sign. Imagine the kinds of problems such tricks 
could create for autonomous weapons. Onboard com-
puter controllers could, for example, be fooled into mis-
taking a hot dog stand for a tank. 

Most baffling, however, is the last directive on the 
Defense Department’s list: minimizing “other enemy 
countermeasures or actions, or unanticipated situations 
on the battlefield.” It is impossible to minimize unantic-
ipated situations on the battlefield because you cannot 
minimize what you cannot anticipate. A conflict zone 
will feature a potentially infinite number of unforesee-
able circumstances; the very essence of conflict is to 
surprise the enemy. When it comes to AWSs, there are 
many ways to trick sensor processing or disrupt com-
puter-controlled machinery. 

One overwhelming computer problem the Depart-
ment of Defense’s directive misses, rather astonishingly, 
is the unpredictability of machine-machine interactions. 
What happens when enemy autonomous weapons con-
front one another? The worrisome answer is that no one 
knows or can know. Every AWS will have to be controlled 
by a top-secret computer algorithm. Its combat strategy 
will have to be unknown to others to prevent successful 
enemy countermeasures. The secrecy makes sense from 
a security perspective—but it dramatically reduces the 
predictability of the weapons’ behavior. 

A clear example of algorithmic confrontation run 
amok was provided by two booksellers, bordeebook and 
profnath, on the Amazon Web site in April 2011. Usually 
the out-of-print 1992 book  The Making of a Fly  sold for 
around $50 plus $3.99 shipping. But every time bordee-
book increased its price, so did profnath; that, in turn, 
increased bordeebook’s price, and so on. Within a week 
bordeebook was selling the book for $23,698,655.93 
plus $3.99 shipping before anyone noticed. Two simple 
and highly predictable computer algorithms went out 
of control because their clashing strategies were un-
known to competing sellers. 

Although this mispricing was harmless, imagine 

What happens when enemy 
autonomous weapons systems,  
all controlled by top-secret 
algorithms, confront one another? 
The worrisome answer is that  
no one knows or can know. 
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what could happen if the complex combat algorithms of 
two swarms of autonomous weapons interacted at high 
speed. Apart from the uncertainties introduced by gam-
ing with adversarial images, jamming, spoofing, decoys 
and cyberattacks, one must contend with the impossi-
bility of predicting the outcome when computer algo-
rithms battle it out. It should be clear that these weap-
ons represent a very dangerous alteration in the nature 
of warfare. Accidental conflicts could break out so fast 
that commanders have no time to understand or re-
spond to what their weapons are doing—leaving devas-
tation in their wake. 

ON THE RUSSIAN BORDER 
ImagIne the followIng scenarIo,  one among many night-
marish confrontations that could accidentally transpire—
unless the race toward AWSs can be stopped. It is 2040, 
and thousands of autonomous supertanks glisten with 
frost along Russia’s border with Europe. Packs of auton-
omous supersonic robot jets fly overhead, scouring for 
enemy activity. Suddenly a tank fires a missile over the 
horizon, and a civilian airliner goes down in flames. It is 
an accident—a sensor glitch triggered a confrontation 
mode—but the tanks do not know that. They rumble for-
ward en masse toward the border. The fighter planes 
shift into battle formation and send alerts to fleets of ro-
bot ships and shoals of autonomous submarines in the 
Black, Barents and White Seas. 

After less than 10 seconds, NATO’s autonomous 
counterweapons swoop in from the air, and attack for-
mations begin to develop on the ground and in the sea. 
Each side’s combat algorithms are unknown to its ene-
my, so no one can predict how the opposing forces will 
interact. The fighter jets avoid one another by swooping, 
diving and twisting with centrifugal forces that would 
kill any human, and they communicate among them-
selves at machine speeds. Each side has many tricks up 
its sleeve for gaming the other. These include disrupting 
each other’s signals and spoofing with fake GPS coordi-
nates to upset coordination and control. 

Within three minutes hundreds of jets are fighting in 
the skies over Russian and European cities at near-hy-
personic speed. The tanks have burst across the border 
and are firing on communications infrastructure, as well 
as at all moving vehicles at railway stations and on roads. 
Large guns on autonomous ships are pounding the land. 
Autonomous naval battles have broken out on and under 
the seas. Military leaders on both sides are trying to 
make sense of the devastation that is happening around 
them. But what can they do? All communications with 
the weapons have been jammed, and there is a complete 
breakdown of command-and-control structures. Only 22 
minutes have passed since the accidental shooting-down 
of the airliner, and swarms of tanks are fast approaching 
Helsinki, Tallinn, Riga, Vilnius, Kyiv and Tbilisi. 

Russian and Western leaders begin urgent discus-
sions, but no one can work out how this started or why. 
Fingers are itching on nuclear buttons as near-futile ef-
forts are underway to evacuate the major cities. There is 

no precedent for this chaos, and the militaries are be-
fuddled. Their planning has fallen apart, and the death 
toll is ramping up by the millisecond. Navigation sys-
tems have been widely spoofed, so some of the weapons 
are breaking from the swarms and crashing into build-
ings. Others have been hacked and are going on killing 
sprees. False electronic signals are making weapons fire 
at random. The countryside is littered with the bodies of 
animals and humans; cities lie in ruins. 

THE IMPORTANCE OF HUMANS 
a bIndIng InternatIonal treaty  to prohibit the develop-
ment, production and use of AWSs and to ensure mean-
ingful human control over weapons systems becomes 
more urgent every day. A human expert, with full aware-
ness of the situation and context and with sufficient 
time to deliberate on the nature, significance and legiti-
macy of the targets, the necessity and appropriateness of 
an attack and the likely outcomes, should determine 
whether or not the attack will commence. For the past 
six years the Campaign to Stop Killer Robots has been 
trying to persuade the member states of the U.N. to 
agree on a treaty. We work at the U.N. Convention on 
Certain Conventional Weapons (CCW), a forum of 125 
nations for negotiating bans on weapons that cause un-
due suffering. Thousands of scientists and leaders in the 
fields of computing and machine learning have joined 
this call, and so have many companies, such as Google’s 
DeepMind. At last count, 30 nations had demanded an 
outright ban of fully autonomous weapons, but most 
others want regulations to ensure that humans are re-
sponsible for making the decision to attack (or not). 
Progress is being blocked, however, by a small handful of 
nations led by the U.S., Russia, Israel and Australia. 

At the CCW, Russia and the U.S. have made it clear 
that they are opposed to the term “human control.” The 
U.S. is striving to replace it with “appropriate levels of 
human judgment”—which could mean no human con-
trol at all, if that were deemed appropriate. Fortunately, 
some hope still exists. U.N. Secretary-General António 
Guterres informed the group of governmental experts 
at the CCW that “machines with the power and discre-
tion to take lives without human involvement are polit-
ically unacceptable, are morally repugnant and should 
be prohibited by international law.” Common sense and 
humanity must prevail—before it is too late. 
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first molecule 
in the universe  
Scientists have identified mystery molecules in 
space and the compound thought to have started 
chemistry in the cosmos 

By Ryan C. Fortenberry 
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The first “atoms” in the universe were not atoms 
at all—they were just nuclei that had not found 
electrons yet. The simplest nucleus, that of com-
mon hydrogen, is a bare proton with no frills. 
When the universe banged into existence, energy 
was rampant. Everything was smashing into every-
thing else. Protons and neutrons often collided, and 

some formed larger nuclei, such as that of deuterium (containing a proton and  
a neutron), as well as helium nuclei with two protons and two neutrons. Various  
other arrangements of protons and neutrons also formed, but because the identity 
of an atom is determined by its number of protons, all these other conglomerations 
were basically just different versions of hydrogen, helium and traces of lithium.

Of these three, helium was the first to begin forming 
“real” atoms. An atom is more than a nucleus—it must 
also possess electrons. Helium nuclei were the first to 
gather a full purse of electrons en masse. Why not hy-
drogen or lithium? Well, helium is the first “noble gas” 
on the periodic table—the first atom with enough elec-
trons to completely fill the available slots in its electron 
shell. Thus, if electrons are the currency of chemistry, 
helium is the master pilferer of the periodic table. In a 

modern laboratory, it takes more energy to steal an elec-
tron from helium than from any other element. And the 
energy required to remove a second electron is more 
than twice what it takes for the first. In the early uni-
verse, once helium nuclei began to find electrons, they 
filled the coffers of their electron clouds well before the 
hydrogen nuclei could begin to 
catch up and before enough 
lithium nuclei were even 

Hydrogen
Nucleus: one proton

Deuterium
Nucleus: one proton  

and one neutron

Ryan C. Fortenberry  is an assistant professor of physical chemistry 
at the University of Mississippi and a former nasa scientist. His 
research uses quantum-chemical computer models to predict how 
molecules absorb light, enabling their potential detection in space.

I N  B R I E F

Astrochemists study 
 the molecules found 
in space, where tem-
peratures and pres-
sures are wildly dif-
ferent than on Earth. 
Consequently, many 
of the chemicals 
there are different 
from those we are fa-
miliar with, and some 
are even unknown.
Several recent 
breakthroughs  in 
this field are chang-
ing how we under-
stand chemistry in 
space. Scientists  
finally spied a long-
predicted molecule 
called helium hy-
dride, or HeH+,  
believed to be the 
first compound  
ever formed in  
the universe.
Researchers have 
also started  identify-
ing some of the mol-
ecules responsible  
for diffuse interstellar 
bands, mystery 
chemical signatures 
seen for decades in 
interstellar space. 
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Atoms are shown here in orbital models, which reveal their subatomic 
constituents. On the following pages we portray molecules—bonds  
of two or more atoms—using traditional models where balls represent 
atoms and sticks represent the electrons they share.

Helium
Nucleus: two protons  

and two neutrons

Lithium
Nucleus: three protons  

and four neutrons
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and strange arrangements of atoms in otherwise com-
mon molecules have also been observed. We have even 
seen molecules containing the so-called inert noble 
gases, such as ArH+ (a combo of argon and hydrogen) 
and the newly documented HeH+. 

Most disciplines of chemistry are focused on mak-
ing the world safer, more efficient or more enjoyable 
for humans. Astrochemistry, however, looks at the 
most fundamental properties of molecules. It helps to 
define what bonding really is, how long molecules 
can remain intact and why certain chemical species 
are more common than others. By studying chemistry 
in environments so very alien compared with Earth—
with temperatures, pressures and available ingredi-
ents quite different from what we are used to—we can 
find molecules that challenge our usual notions of 

present to collect all three of their desired electrons.
The rest of the matter in the universe at that time 

was still largely composed of lone protons, which were 
starting to feel the effects of being bereft of an elec-
tron. They began slowing down and looking for oppo-
sitely charged partners to make them electrically neu-
tral. But catching free electrons for themselves was dif-
ficult, so the protons turned to helium, which already 
had some. Although helium is loath to share, it kept 
running into persistent hydrogen nuclei all the time. 
The collisional pressure eventually led a few helium at-
oms to share their electrons with protons. Thus, the 
first chemical bonds were formed. The new compound 
of helium and hydrogen was called helium hydride or 
helonium (HeH+), the very first molecule (of any sus-
tained abundance) in the universe.

That helium was the first element to bond is sur-
prising because in our current age, we think of helium 
as the least likely element to link up with others—the 
satisfied noble gas with just the right number of elec-
trons. But in the early universe, helium was the only 
game in town—the only bank with electrons to lend. 

This story has stood on solid theoretical ground for 
decades, but it has long lacked observational corrobo-
ration. HeH+ cannot form on Earth, except in labs, and 
for decades it went undetected in space. Last year, 
however, astronomers announced that they had ob-
served this molecule for the first time, lurking in the 
funeral pyre of a dying star. A 40-year search had paid 
off, and a new and vital piece was added to our picture 
of how the early universe took shape. 

HeH+ now joins the ranks of extraterrestrial mole-
cules; so far scientists have detected more than 200 
molecular species in space. This study of chemistry be-
yond Earth—astrochemistry, as we practitioners like 
to call it—is aimed at clarifying what molecules are 
present in space, how they form, and what their evolu-
tion means for observational and theoretical astro-
physics. Many of the known astromolecules, including 
water, ammonia and formaldehyde, are common here 
on Earth. Others are terrestrially bizarre, such as hy-
drochloric acid with an extra proton and hydrogen 
peroxide with one of its hydrogen atoms amputated. 
Charged molecules, systems with unpaired electrons 

Helium hydride or helonium (HeH+)

Orbital model

Stick-and-ball model

Water 
(H2O)

Ammonia 
(NH3)

Formaldehyde 
(CH2O)

Hydrogen 
peroxide with  
a missing H 
(HO2)

Hydrochloric acid 
plus H (H2Cl+)

Argon hydride  
or argonium (ArH+)
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how atoms interact and that bring us to a deeper 
chemical understanding. Ultimately we hope to learn 
how chemistry led to the ingredients that ended up  
in the planets in our solar system and eventually  
en  abled life. 

 WHERE WAS HeH+?
in a university of California,  Berkeley, lab in 1925, 
T.  R. Hogness (who later worked on the Manhattan 
Project) and teaching fellow E.  G. Lunn found that 
mixing helium and hydrogen gas in the presence of an 
electric arc within a vacuum chamber could create 
different ions with different masses. Measuring the 
mass-to-charge ratio of molecules is the forte of the 
chemical discipline called mass spectrometry; the 
early implementation of this now common chemical 
technique showed that this mixture produced a tran-
sient mass-to-charge ratio of 5. That could only be 
HeH+. But keeping this noble gas molecule around 
long enough to study it proved exceptionally difficult, 
even in Hogness and Lunn’s controlled lab. 

In the early universe, it would have been even more 
unstable because HeH+ is likely to let go of its proton 
on even the slightest contact with another atom. In 
this relationship, helium gives two electrons, whereas 
hydrogen gives none. Such uneven bonding (called 
dative bonding) is weaker than traditional covalent 
bonds, in which both atoms contribute more evenly. 

In 1978 John H. Black, then at the University of 
Minnesota, was the first to argue that HeH+ could still 
be present in space. Black suggested that a good place 
to look was planetary nebulae, the puffed-out and 
highly energized matter created in a star’s death throes. 
In these clouds, a thin layer of ionized helium atoms is 
typically found in the presence of neutral hydrogen at-
oms; helium’s strong need for electrons could drive it 
to borrow one from hydrogen, creating a bond. Conse-
quently, since the late 1970s astronomers and their 
chemist collaborators have been looking for HeH+ in 
myriad places, from the edge of the universe to super-
massive stars. Yet for decades these searches found 
nothing, leading some to doubt the validity of HeH+’s 
role in jump-starting chemistry. Did helium really 
bond with H+? It seemed like it must have; there was 
nothing else to bond with back then. But if that were 
the case, then where was HeH+?

 MOLECULAR FINGERPRINTS 
while astroChemists were looking  for HeH+ and com-
ing up empty, researchers found many other mole-
cules they were not expecting. They could not even 
identify some of them.

It began in 1919, when Mary Lea Heger was using 
the Lick Observatory on top of Mount Hamilton in 
Santa Clara County, California, to observe the behavior 
of a pair of orbiting binary stars, a twin system akin  

Spectral 
Signals 

Astronomers identify  molecules  
in space by observing their spectral 
features—the particular wave-
lengths of light they absorb and 
emit. Each molecule has a unique 
spectral signature based on its 
particular chemistry. Scientists 
first saw the signature of helium 
hydride (HeH+) when they creat-
ed this compound in Earth-based 
labs, and they predicted that it 
would have formed in the early 
universe. A long search for it  
in space finally paid off in 2016,  
when scientists spied this line  
in light coming from the nebula 
NGC 7027, using the Stratospheric 
Observatory for Infrared  
Astron omy (SOFIA), an infrared 
telescope mounted in a repur-
posed jumbo jet.
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to the suns of Tatooine. What she saw was surprising. 
Each molecule has its own arrangement of atoms 

and electrons and therefore absorbs light in a unique 
way. These “absorption features” give every molecule 
its own set of fingerprints, seen when astronomers 
separate incoming light into its constituent wave-
lengths—a process called spectroscopy. As Heger’s bi-
nary stars orbited their central point of gravity, the 
spectral features in each star’s atmosphere also shift-
ed in wavelength (the Doppler effect). 

But Heger also found some spectral fingerprints 
that were standing still as the stars moved around. 
She then looked at another binary star system and saw 
the same pattern. Follow-up work showed that these 
nonmoving features also showed up when telescopes 
were aimed toward single stars. The imprints must 
have been coming from molecules not around stars 
but in the vast, cold regions between them. The crazi-
est part was that basically the same fingerprints were 
present for all observed stars and even for other galax-
ies. The signatures, dubbed diffuse interstellar bands 
(DIBs), were everywhere. Scientists scoured the docu-
mented spectral features of molecules on Earth, newly 
synthesized ones from labs and those observed in 
space through radio-telescopic fingerprinting. Noth-
ing matched the DIBs—they were something novel.

The late Harvard University professor William 
Klemp erer, one of the foremost pioneers of astrochem-
istry, once suggested that the DIB signatures might be-
long to the trisulfur anion, S3

–. When this proved un-
true, he was so dejected that he wrote, “There is no bet-
ter way to lose a scientific reputation than to speculate 
on the carrier[s] of the diffuse [interstellar] bands.” 
Hypotheses as to the provenance of the DIBs circulat-
ed through the decades, but none stuck—it was known 
as the longest-standing problem in spectroscopy. 

One of the most intriguing hypotheses proposed 
polycyclic aromatic hydrocarbons (PAHs) as a DIB 
suspect. PAHs—hexagons of carbon atoms laid out in 
sheets—are the major component of soot, asphalt and 
graphite. They are unlikely to react with other mole-
cules but do tend to stick to them. For astrochemists, 
the problem with PAHs is that their many varieties 
are so similar to one another that their spectroscopic 
fingerprints, or spectra, run together. It is like trying 
to spot the individual brushstrokes of Vincent van 
Gogh’s  Starry Night  instead of seeing the full paint-
ing—the many parts are subsumed by the whole. But 
the DIBs seemed to behave in a similar fashion. Could 
PAHs explain the DIBs?

Such ideas have bounced around in astrochemistry 
circles since the 1970s, but one experiment forever 
changed how we think about carbon. Harry Kroto, 
who died in 2016, was at the University of Sussex in 
England in the 1980s and worked on a team to detect 
new molecules in space. He heard about an experi-
ment by Robert  F. Curl and Richard  E. Smalley, both 
chemists at Rice University at the time, in which they 
had ablated an aluminum surface and found all kinds 
of new aluminum molecular clusters. When they sub-
stituted graphite (a so-called grand-PAH) for alumi-
num, a most bizarre molecule appeared: C60, 60 car-
bon atoms arranged like a soccer ball. In 1996 Kroto, 
Curl and Smalley were awarded the Nobel Prize in 
Chemistry for their roles in discovering the molecule, 
called buckminsterfullerene, or just fullerene (also 
known as a buckyball). Kroto was convinced that 
buckyballs were present in space and were likely to be 
the source of some DIB fingerprints. Only a few peo-
ple believed him, though, and he and his colleagues 
moved on. Yet in 2010, a quarter of a century after 
their initial discovery in the laboratory, C60 and its 
cousin C70 were observed in the infrared in planetary 
nebula Tc1 in the constellation Cygnus. Whether these 
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After that, the helium atoms were largely left alone. 
It might seem, then, that the brief existence of 

HeH+ was inconsequential, but that is far from the 
case. Models of potential chemical reactions in this 
period indicate that without HeH+ formation, H2

+, 
and then neutral H2, would have come together much 
more slowly. Once H2 had been made, though, the en-
tire tree of chemistry unfolded. Next came H3

+, which 
begot CH+, which begot CH2

+ and a cascade of other 
molecules. Eventually this chain led to water, ethanol 
and larger species. These processes are all the product 
of the unbalanced bonding in HeH+; without this ini-
tial relation, the universe would be a different place. 

molecules were, in fact, related to the visible-wave-
length DIBs was still undecided. Theoretical work 
suggested so, but scientists lacked confirming experi-
mental data. 

In 2015 the cation form of fullerene, C60
+, was fi-

nally trapped in the lab, and scientists were able to 
conclusively measure its near-infrared spectrum. One, 
then two lines from this molecule matched known 
DIB wavelengths. Later, researchers showed that 
these fingerprints matched four or five DIBs. Then, in 
2019, an international team led by Martin A. Cordiner 
of nasa’s Goddard Space Flight Center used the Hub-
ble Space Telescope to examine the DIB wavelengths 
seen in the direction of 11 mostly red (older, bigger) 
stars and found that they matched the experimental 
data for C60

+, confirming at last that this molecule’s 
fingerprints are responsible for some of the DIBs. 

This discovery indicates that at least one type of 
molecule conclusively leaves its fingerprints all over 
interstellar space. Buckyballs are believed to evolve 
from PAHs, and their presence in space implies that 
their parent molecules must also be out there. Yet it 
was not until 2018 that researchers observed the fin-
gerprints of a PAH-family molecule in space. The com-
pound they saw, benzonitrile (C6H5-CN), is a rare aro-
matic hydrocarbon that is more easily detected than 
its relatives. And even more recently, scientists ob-
served double-ring cyanonaphthalene molecules, re-
vealing that larger PAHs are present as well. 

 DISCOVERY 
Despite these breakthroughs,  for a long time HeH+ 
remained elusive. 

The first molecules would have dissipated fairly 
quickly after the earliest epochs. As the universe ma-
tured, expanded and cooled, the leftover hydrogen nu-
clei began to gather electrons of their own. At that 
point these now neutral hydrogen atoms presumably 
felt the positive charge on the HeH+ molecules. When 
the atoms and molecules collided, the relatively weak 
He-H dative bond broke, and a much stronger covalent 
bond between two hydrogens formed to create H2

+.  

Still, by 2013 astrochemists were getting frustrated 
that HeH+ was no  where to be found. But that year a 
hopeful sign came when researchers discovered the 
related noble gas molecule ArH+ in the Crab Nebula 
supernova remnant. Scientists focused the search  
for HeH+ in similar, superenergized environments. 
The larger problem, though, was that the spectra  
of HeH+ fell in the same region as fingerprints of  
the very first molecule ever observed in space, the  
CH radical. No telescopes had the power to separate 
these signatures. 

Then along came the Stratospheric Observatory for 
Infrared Astronomy (SOFIA), a repurposed 747 jumbo 
jet with a hole cut in its side so an infrared telescope 
can look out. In May 2016 an international team used 
SOFIA, a joint project of nasa and the German Aero-
space Center, for three nights of observations. The SO-
FIA scope has the resolution necessary to discern 
HeH+’s unique rotational-frequency fingerprint at 

Benzonitrile 
(C6H5-CN)

Helium hydride or 
helonium (HeH+)

H2+
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Nevertheless, the finding helps to constrain our knowl-
edge of this compound. Scientists can now design bet-
ter models of the universe as it existed when HeH+ was 
the only molecule in town. The discovery might also 
give us clues about where else this chemical may be 
lurking in space today, directing us toward other plan-
etary nebulae or even other regions of space that are so 
far away they correspond to earlier epochs of time, go-
ing back to the edge of the universe. 

 HARDER QUESTIONS 
this is an exCiting time  in astrochemistry. Three grand 
questions have been conclusively answered in quick 
succession. Scientists have observed the first molecule 
to form in the cosmos and identified the first finger-
prints belonging to the mysterious DIBs, and they are 
finally elucidating PAHs from the blackness of space. 

Additionally, lab simulations of interstellar condi-
tions are showing how amino acids and nucleobases 
might have formed. Space telescopes such as  SOFIA 
and Hubble, as well as the upcoming James Webb 
Space Telescope, promise to provide unprecedented 
spectral characterization of stellar objects where new, 
less common molecular fingerprints may be seen.

Now that we are finding answers to these known 
problems, other quandaries are popping up. Eventual-
ly astrochemists hope to tackle harder questions, such 
as “What are the rest of the DIBs?,” “What are the mo-
lecular origins of life?” and “What chemical mix is 
necessary for the formation of rocky planets rather 
than gas giants?” It was the sharing of electrons that 
created observable matter in the cosmos. When we 
have a deeper comprehension of these chemical pro-
cesses, we can gain a finer-grain understanding of as-
trophysics and the overall history of our universe. 

2,010.184 gigahertz. 
There, in the haystack of 
far-infrared data within another 
burned-out cinder of an exploded star in the planetary 
nebula NGC 7027, part of the constellation Cygnus, was 
the fingerprint that had gone missing for so long. This 
hellish place, with its high temperatures and energies, 
was not unlike the early universe. On April 17, 2019, a 
team led by Rolf Güsten of the Max Planck Institute for 
Radio Astronomy in Bonn, Germany, published a re-
port in  Nature  heralding the discovery of HeH+. 

Granted, this sighting is not of primordial HeH+. 
We believe that the molecules Güsten and his col-
leagues observed were created much more recently. 
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THE BIOMEDICAL WORLD IS AWASH IN DATA.  

We have terabytes of   genomic information from 
mouse to human, troves of health metrics from clin-
ical trials, and reams of so-called real-world data 
from insurance companies and pharmacies. Using 
powerful computers, scientists have scrutinized 
this bounty with some � ne results, but it has be-
come clear that we can learn much more with an 
assist from arti� cial intelligence. Over the next 
decade deep-learning neural networks will like-
ly transform how we look for patterns in data 

and how research is conducted and applied to human health. � is special re-
port explores the promise of this nascent revolution.

Right now the biggest bets are being placed in the realm of drug discov-
ery (  page S3  ). And for good reason. � e average cost of bringing a new drug 
to market nearly doubled between 2003 and 2013 to $2.6 billion, and be-
cause nine out of 10 fail in the � nal two phases of clinical trials, most of the 
money goes to waste. Every large pharma company is working with at least 
one AI-focused start-up to see if it can raise the return on investment. Ma-
chine-learning algorithms can sift through millions of compounds, narrow-
ing the options for a particular drug target. Perhaps more exciting, AI sys-
tems—unconstrained by prevailing theories and biases—can identify en-
tirely new targets by spotting subtle di� erences at the level of tissues, cells, 
genes or proteins between, say, a healthy brain and one marked by Parkin-
son’s—di� erences that might elude or even mystify a human scientist.

� at same sharp-eyed ability is also being deployed to interpret medical 
scans (  page S8 ). Some systems can already detect early signs of cancer that 
might be missed by a radiologist or see things that are simply beyond hu-
man capacity—such as assessing cardiovascular risk from a retinal scan. � e 
Food and Drug Administration is approving imaging algorithms at a rapid 
clip. Other AI applications lie a bit further down the road. Will the ine�  -
ciencies of today’s electronic health records (EHRs) be addressed by smart 
systems that prevent prescribing errors and provide early warnings of dis-
ease? Some of the world’s biggest tech giants are working on it ( page S13 ). 

Despite fears that machines will displace humans, most experts believe 
arti� cial and human intelligence will work synergistically. � e bigger con-
cern is a shortage of people with both biomedical knowledge and algo-
rithm-building pro� ciency ( page S16 ). If this human problem can be re  -
solved, the key to creating successful AI applications may depend on the qual-
ity and quantity of what we feed their hungry maw. “We rely on three things,” 
says the CEO of one deep-learning start-up. “Data, data and more data.” 
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THERE ARE MANY REASONS  that promising drugs wash out during pharmaceutical development, 
and one of them is cytochrome P450. A set of enzymes mostly produced in the liver, CYP450, as 
it is commonly called, is involved in breaking down chemicals and preventing them from build-
ing up to dangerous levels in the bloodstream. Many experimental drugs, it turns out, inhibit the 
production of CYP450—a vexing side effect that can render such a drug toxic in humans. 

AI AND DIGITAL HEALTH

Drug companies have long relied on conventional tools 
to try to predict whether a drug candidate will inhibit 
CYP450 in patients, such as by conducting chemical analy-
ses in test tubes, looking at CYP450 interactions with bet-
ter-understood drugs that have chemical similarities, and 
running tests on mice. But their predictions are wrong 
about a third of the time. In those cases, CYP450-related 
toxicity may come to light only during human trials, result-
ing in millions of dollars and years of effort going to waste. 
This costly inaccuracy can, at times, feel like “the bane of 
our existence,” says Saurabh Saha, senior vice president of 
research and development and translational medicine at 
Bristol-Myers Squibb. 

Inefficiencies such as this one contribute to a larger prob-
lem: the $1-trillion global pharmaceutical industry has been 
in a drug development and productivity slide for at least two 
decades. Pharmaceutical companies are spending more and 
more—the 10 largest ones now pay nearly $80 billion a 
year—to come up with fewer and fewer successful drugs. 
Ten years ago every dollar invested in research and develop-
ment saw a return of 10 cents; today it yields less than two 
cents. In part, that is because the drugs that are easiest to 
find and that safely and effectively treat common disorders 
have all been found; what is left is hunting for drugs that ad-
dress problems with complex and elusive solutions and that 
would treat disorders affecting only tiny portions of the 
population—and thus could return far less in revenue. 

Because finding new, successful drugs has become so 
much harder, the average cost of bringing one to market 
nearly doubled between 2003 and 2013 to $2.6 billion, ac-
cording to the Tufts Center for the Study of Drug Develop-
ment. These same challenges have increased the lab-to-mar-
ket time line to 12 years, with 90 percent of drugs washing 
out in one of the phases of human trials.

It’s no wonder, then, that the industry is enthusiastic 
about artificial-intelligence tools for drug development. 
These tools do not work by having expert-developed ana-
lytical techniques programmed into them; rather users feed 
them sample problems (a molecule) and solutions (how the 
molecule ultimately behaves as a drug) so that the software 
can develop its own computational approaches for produc-
ing those same solutions. 

Most AI-based drug-discovery applications take the form 
of a technique called machine learning, including a subset of 
the approach called deep learning. Most machine-learning 
programs can work with small data sets that are organized 
and labeled, whereas deep-learning programs can work with 

raw, unstructured data and require much larger volumes. 
Thus, a machine-learning program might learn to recognize 
the different features of a cell after being shown tens of thou-
sands of examples of photographs of cells in which the parts 
are already labeled. A deep-learning version can figure out 
those parts on its own from unlabeled cell images, but it 
might need to look at a million of them to do it.

Many scientists in the field think that AI will ultimately 
improve drug development in several ways: by identifying 
more promising drug candidates; by raising the “hit rate,” or 
the percentage of candidates that make it through clinical 
trials and gain regulatory approval; and by speeding up the 
overall process. A machine-learning program recently de-
ployed by Bristol-Myers Squibb, for instance, was trained to 
find patterns in data that correlate with CYP450 inhibition. 
Saha says the program boosted the accuracy of its CYP450 
predictions to 95 percent—a sixfold reduction in the failure 
rate compared with conventional methods. These results 
help researchers quickly screen out potentially toxic drugs 
and focus instead on candidates that have a stronger shot at 
making it all the way through multiple human trials to U.S. 
Food and Drug Administration approval. “Where AI can 
make a huge difference is having drugs that fail early on, be-
fore we make all that investment in them,” says Vipin Go-
pal, chief data and analytics officer at Eli Lilly.

Resources are now piling into the field. AI-based drug-
discovery start-ups raised more than $1 billion in funding in 
2018, and as of last September, they were on track to raise 
$1.5 billion in 2019. Every one of the major pharmaceuti-
cal companies has announced a partnership with at least 
one such firm. Only a few AI-discovered drugs are actually 
in the human-testing pipeline, however, and none has be-
gun phase 3 hu  man trials, the gold-standard test for experi-
mental drugs. Saha concedes that it will be several years be-
fore he can say for sure whether the company’s hit rates will 
go up as a result of the AI prediction rate of CYP450 inhibi-
tion. For all the hype in the industry, it is far from certain 
that early results will translate to more and better drugs. 

SIFTING THROUGH MILLIONS OF MOLECULES 
EMERGING AI PROGRAMS  are not exactly a revolutionary up-
date in the drug industry, which has for some time been 
building sophisticated analytical solutions that aid with drug 
development. The rise of powerful statistical and biophysi-
cal modeling programs well over a decade ago as part of the 
growth of the field of bioinformatics—the quest to use com-
putational tools to derive biological insights from large 
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amounts of data—led to tools that can predict the proper-
ties of molecules. But these programs have been limited by 
scientists’ incomplete understanding of how molecules in-
teract: they cannot tell conventional software how to find in-
sights in data when they do not know what elements of the 
data are most important and how they relate to one anoth-
er. Imbued with the ability to derive their own insights into 
which data elements matter, newer AI programs can extract 
better predictions for a wider range of variables.

AI tools tackle different aspects of drug discovery in sev-
eral ways. Some AI companies, for example, are focusing on 
the problem of designing a drug that can safely and effective-
ly work on a known target—usually a specific, well-studied 
protein that is associated with a disease. The goal is typically 
to come up with a molecule that can chemically bind to the 
target protein and modify it so that it no longer contributes 
to the disease or its symptoms. Cyclica, a Canadian firm, 
puts its software to work on matching the biophysi-
cal structures and biochemical properties of millions 
of molecules to the structures and properties of some 
150,000 proteins to uncover molecules likely to bind 
to target proteins, as well as those to avoid.

But molecules that are good candidates as drugs 
still have to jump through other hoops. Those in-
clude making it through the gut into the blood-
stream without being immediately broken down by 
the liver or metabolic processes; working in a par-
ticular organ such as the kidney without disrupting 
other organs; avoiding binding to and incapacitat-
ing any of the thousands of other proteins in the 
human body that are important to health; and 
breaking down and leaving the body before drug 
levels become potentially dangerous. Cyclica’s AI 
software takes all those requirements into consider-
ation. “A molecule that can interact with a protein target 
can usually interact with upward of 300 proteins,”  
Cyclica’s CEO Naheed Kurji says. “If you’re designing a 
molecule, it behooves you to consider the other 299 inter-
actions that could have disastrous effects in humans.”

There is growing recognition among biomedical re-
searchers that complex diseases such as cancer and Alzhei-
mer’s involve hundreds of proteins, and hitting just one of 
them is not likely to be disruptive enough. Cyclica is at-
tempting to find individual compounds that can interact 
with dozens of target proteins yet avoid interacting with 
hundreds of other proteins, Kurji explains. Currently under 
development, he adds, is the incorporation of a wealth of 
anonymized global genetic data about variations in pro-
teins, so that the software can specify which patients the 
candidate drugs would work best on. Kurji claims that to-
gether these features will eventually be able to shave five 
years off the typical seven-year-long time frame for bringing 
a candidate drug from initial identification to human trials.

Merck and Bayer are among the big pharma companies 

that have announced partnerships with Cyclica. As is the 
case with most AI-pharma partnerships, the companies are 
not releasing much insight into exactly what AI-generated 
drug candidates may be coming out of the collaborations. 
But Cyclica has shared some details of its successes in identi-
fying a key target protein linked to already fda-approved 
drugs for systemic scleroderma, an autoimmune disease of 
the skin and other organs, as well as one linked to the Ebola 
virus. Each drug is already fda-approved for the treatment 
of other disorders—HIV and depression, respectively—
which means they both could be quickly “repurposed” for 
the new applications if the research continues to pan out.

Sometimes researchers identify a target protein that 
might play a critical role in disease but find that—as is true 
of about 90 percent of the proteins in the human body—
not much is known about its structure and properties. 
With little data to go on, most machine- and deep-learning 

programs will not be able to figure out how to “drug” the 
protein—that is, come up with compounds that will bind 
to it and meet the other criteria for safety and efficacy.  
A handful of AI companies are focusing on these kinds of 
“small data” problems, including Exscientia, which uses its 
software to hunt down molecules that might work with a 
target protein. It can produce useful insights with as few as 
10 pieces of data about a protein, says the company’s CEO, 
Andrew Hopkins, a professor of medicinal informatics at 
the University of Dundee in Scotland.

Exscientia’s algorithms compare the limited information 
available about a target protein against a database of about a 
billion protein interactions. This step narrows down the list 
of possible compounds that might work and specifies what 
additional data would help further refine the focus. Such 
data might come from looking at tissue samples to learn 
more about how the protein behaves in the body, for exam-
ple. The resulting new data are then fed into the software, 
which pares the list again and suggests another round of 
needed data. This process is repeated until the software is 

Resources are now piling into the field. Only  
a few AI-discovered drugs are actually in the 
human-testing pipeline, however, and none 
has begun phase 3 hu  man trials, the gold-

standard test for experimental drugs.  
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THERE ARE MANY REASONS  that promising drugs wash out during pharmaceutical development, 
and one of them is cytochrome P450. A set of enzymes mostly produced in the liver, CYP450, as 
it is commonly called, is involved in breaking down chemicals and preventing them from build-
ing up to dangerous levels in the bloodstream. Many experimental drugs, it turns out, inhibit the 
production of CYP450—a vexing side effect that can render such a drug toxic in humans. 

AI AND DIGITAL HEALTH

Drug companies have long relied on conventional tools 
to try to predict whether a drug candidate will inhibit 
CYP450 in patients, such as by conducting chemical analy-
ses in test tubes, looking at CYP450 interactions with bet-
ter-understood drugs that have chemical similarities, and 
running tests on mice. But their predictions are wrong 
about a third of the time. In those cases, CYP450-related 
toxicity may come to light only during human trials, result-
ing in millions of dollars and years of effort going to waste. 
This costly inaccuracy can, at times, feel like “the bane of 
our existence,” says Saurabh Saha, senior vice president of 
research and development and translational medicine at 
Bristol-Myers Squibb. 

Inefficiencies such as this one contribute to a larger prob-
lem: the $1-trillion global pharmaceutical industry has been 
in a drug development and productivity slide for at least two 
decades. Pharmaceutical companies are spending more and 
more—the 10 largest ones now pay nearly $80 billion a 
year—to come up with fewer and fewer successful drugs. 
Ten years ago every dollar invested in research and develop-
ment saw a return of 10 cents; today it yields less than two 
cents. In part, that is because the drugs that are easiest to 
find and that safely and effectively treat common disorders 
have all been found; what is left is hunting for drugs that ad-
dress problems with complex and elusive solutions and that 
would treat disorders affecting only tiny portions of the 
population—and thus could return far less in revenue. 

Because finding new, successful drugs has become so 
much harder, the average cost of bringing one to market 
nearly doubled between 2003 and 2013 to $2.6 billion, ac-
cording to the Tufts Center for the Study of Drug Develop-
ment. These same challenges have increased the lab-to-mar-
ket time line to 12 years, with 90 percent of drugs washing 
out in one of the phases of human trials.

It’s no wonder, then, that the industry is enthusiastic 
about artificial-intelligence tools for drug development. 
These tools do not work by having expert-developed ana-
lytical techniques programmed into them; rather users feed 
them sample problems (a molecule) and solutions (how the 
molecule ultimately behaves as a drug) so that the software 
can develop its own computational approaches for produc-
ing those same solutions. 

Most AI-based drug-discovery applications take the form 
of a technique called machine learning, including a subset of 
the approach called deep learning. Most machine-learning 
programs can work with small data sets that are organized 
and labeled, whereas deep-learning programs can work with 

raw, unstructured data and require much larger volumes. 
Thus, a machine-learning program might learn to recognize 
the different features of a cell after being shown tens of thou-
sands of examples of photographs of cells in which the parts 
are already labeled. A deep-learning version can figure out 
those parts on its own from unlabeled cell images, but it 
might need to look at a million of them to do it.

Many scientists in the field think that AI will ultimately 
improve drug development in several ways: by identifying 
more promising drug candidates; by raising the “hit rate,” or 
the percentage of candidates that make it through clinical 
trials and gain regulatory approval; and by speeding up the 
overall process. A machine-learning program recently de-
ployed by Bristol-Myers Squibb, for instance, was trained to 
find patterns in data that correlate with CYP450 inhibition. 
Saha says the program boosted the accuracy of its CYP450 
predictions to 95 percent—a sixfold reduction in the failure 
rate compared with conventional methods. These results 
help researchers quickly screen out potentially toxic drugs 
and focus instead on candidates that have a stronger shot at 
making it all the way through multiple human trials to U.S. 
Food and Drug Administration approval. “Where AI can 
make a huge difference is having drugs that fail early on, be-
fore we make all that investment in them,” says Vipin Go-
pal, chief data and analytics officer at Eli Lilly.

Resources are now piling into the field. AI-based drug-
discovery start-ups raised more than $1 billion in funding in 
2018, and as of last September, they were on track to raise 
$1.5 billion in 2019. Every one of the major pharmaceuti-
cal companies has announced a partnership with at least 
one such firm. Only a few AI-discovered drugs are actually 
in the human-testing pipeline, however, and none has be-
gun phase 3 hu  man trials, the gold-standard test for experi-
mental drugs. Saha concedes that it will be several years be-
fore he can say for sure whether the company’s hit rates will 
go up as a result of the AI prediction rate of CYP450 inhibi-
tion. For all the hype in the industry, it is far from certain 
that early results will translate to more and better drugs. 

SIFTING THROUGH MILLIONS OF MOLECULES 
EMERGING AI PROGRAMS  are not exactly a revolutionary up-
date in the drug industry, which has for some time been 
building sophisticated analytical solutions that aid with drug 
development. The rise of powerful statistical and biophysi-
cal modeling programs well over a decade ago as part of the 
growth of the field of bioinformatics—the quest to use com-
putational tools to derive biological insights from large 
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amounts of data—led to tools that can predict the proper-
ties of molecules. But these programs have been limited by 
scientists’ incomplete understanding of how molecules in-
teract: they cannot tell conventional software how to find in-
sights in data when they do not know what elements of the 
data are most important and how they relate to one anoth-
er. Imbued with the ability to derive their own insights into 
which data elements matter, newer AI programs can extract 
better predictions for a wider range of variables.

AI tools tackle different aspects of drug discovery in sev-
eral ways. Some AI companies, for example, are focusing on 
the problem of designing a drug that can safely and effective-
ly work on a known target—usually a specific, well-studied 
protein that is associated with a disease. The goal is typically 
to come up with a molecule that can chemically bind to the 
target protein and modify it so that it no longer contributes 
to the disease or its symptoms. Cyclica, a Canadian firm, 
puts its software to work on matching the biophysi-
cal structures and biochemical properties of millions 
of molecules to the structures and properties of some 
150,000 proteins to uncover molecules likely to bind 
to target proteins, as well as those to avoid.

But molecules that are good candidates as drugs 
still have to jump through other hoops. Those in-
clude making it through the gut into the blood-
stream without being immediately broken down by 
the liver or metabolic processes; working in a par-
ticular organ such as the kidney without disrupting 
other organs; avoiding binding to and incapacitat-
ing any of the thousands of other proteins in the 
human body that are important to health; and 
breaking down and leaving the body before drug 
levels become potentially dangerous. Cyclica’s AI 
software takes all those requirements into consider-
ation. “A molecule that can interact with a protein target 
can usually interact with upward of 300 proteins,”  
Cyclica’s CEO Naheed Kurji says. “If you’re designing a 
molecule, it behooves you to consider the other 299 inter-
actions that could have disastrous effects in humans.”

There is growing recognition among biomedical re-
searchers that complex diseases such as cancer and Alzhei-
mer’s involve hundreds of proteins, and hitting just one of 
them is not likely to be disruptive enough. Cyclica is at-
tempting to find individual compounds that can interact 
with dozens of target proteins yet avoid interacting with 
hundreds of other proteins, Kurji explains. Currently under 
development, he adds, is the incorporation of a wealth of 
anonymized global genetic data about variations in pro-
teins, so that the software can specify which patients the 
candidate drugs would work best on. Kurji claims that to-
gether these features will eventually be able to shave five 
years off the typical seven-year-long time frame for bringing 
a candidate drug from initial identification to human trials.

Merck and Bayer are among the big pharma companies 

that have announced partnerships with Cyclica. As is the 
case with most AI-pharma partnerships, the companies are 
not releasing much insight into exactly what AI-generated 
drug candidates may be coming out of the collaborations. 
But Cyclica has shared some details of its successes in identi-
fying a key target protein linked to already fda-approved 
drugs for systemic scleroderma, an autoimmune disease of 
the skin and other organs, as well as one linked to the Ebola 
virus. Each drug is already fda-approved for the treatment 
of other disorders—HIV and depression, respectively—
which means they both could be quickly “repurposed” for 
the new applications if the research continues to pan out.

Sometimes researchers identify a target protein that 
might play a critical role in disease but find that—as is true 
of about 90 percent of the proteins in the human body—
not much is known about its structure and properties. 
With little data to go on, most machine- and deep-learning 

programs will not be able to figure out how to “drug” the 
protein—that is, come up with compounds that will bind 
to it and meet the other criteria for safety and efficacy.  
A handful of AI companies are focusing on these kinds of 
“small data” problems, including Exscientia, which uses its 
software to hunt down molecules that might work with a 
target protein. It can produce useful insights with as few as 
10 pieces of data about a protein, says the company’s CEO, 
Andrew Hopkins, a professor of medicinal informatics at 
the University of Dundee in Scotland.

Exscientia’s algorithms compare the limited information 
available about a target protein against a database of about a 
billion protein interactions. This step narrows down the list 
of possible compounds that might work and specifies what 
additional data would help further refine the focus. Such 
data might come from looking at tissue samples to learn 
more about how the protein behaves in the body, for exam-
ple. The resulting new data are then fed into the software, 
which pares the list again and suggests another round of 
needed data. This process is repeated until the software is 

Resources are now piling into the field. Only  
a few AI-discovered drugs are actually in the 
human-testing pipeline, however, and none 
has begun phase 3 hu  man trials, the gold-

standard test for experimental drugs.  

sad0220Inno_SciAm3p.indd   5 12/9/19   6:19 PM
sad0220Inno_SciAm_4p-SA.indd   5 12/17/19   4:41 PM



6 Scientific American, S6

ready to generate a manageable list of compounds that are 
favorable drug candidates for the target. 

Hopkins claims that Exscientia’s process can cut the 
time spent in discovery from 4.5 years to as little as one year, 
reduces discovery costs by 80 percent and results in one-
fifth the number of synthesized compounds as is normally 
needed to produce a single winning drug. Exscientia is part-
nering with biotech giant Celgene in an effort to find new 
potential drugs for three targets. 

Meanwhile an Exscientia partnership with GlaxoSmith-
Kline has led to what the companies say is a promising mol-
ecule targeting a novel pathway to treat chronic obstructive 
pulmonary disease. But as with any AI company addressing 
drug development, Exscientia simply has not been in the 
game long enough to have generated enough new candi-
dates that could have made it through to late-stage trials—a 
process that typically takes five to eight years. Hopkins 
claims one of the candidates Exscientia has identified may 
reach human trials as early as this year. “At the end of the day 
we’ll be judged on the drugs we deliver,” he says. 

THE NEED FOR NEW TARGETS 
FINDING A MOLECULE  to hit a new target is not the only ma-
jor challenge in drug discovery. There is also the need to iden-
tify targets in the first place. To spot proteins that might have 
roles in diseases, biopharma company Berg applies AI to sift 
through information derived from human tissue samples. 
This approach aims to solve two problems that hang over 
most research into drug targets, according to Berg’s CEO 
Niven R. Narain: the efforts tend to be based on a research-
er’s theory or hunch, which can bias the results and overly re-
strict the pool of candidates, and they often turn up targets 
that are correlated to the disease but do not ultimately prove 
causative, which means drugging them will not help. 

Berg’s approach involves plugging in every piece of data 
that can be wrung out of a patient’s tissue samples, organ 
fluids and bloodwork. These extracted data include genom-
ics, proteomics, metabolomics, lipidomics, and more—an 
unusually broad range to consider in a hunt for targets. 
Samples are taken from people with and without a particu-
lar disease and at different stages of disease progression. 
Living cells from the samples are exposed in the laboratory 
to various compounds and conditions, such as low levels of 
oxygen or high levels of glucose. This method produces 
data on corresponding changes ranging from a cell’s ability 
to produce energy to the rigidity of its membrane. 

All the data are then run through a set of deep-learning 
programs that search for any differences between nondisease 
and disease states, with an eye to eventually focusing on pro-
teins whose presence seem to have an impact on the disease. 
In some cases, those proteins become candidates as targets, 
at which point Berg’s software can start searching for com-
pounds to drug those targets. What is more, because the 
software can discern when the target seems to cause disease 

AI AND DIGITAL HEALTH

in only a subset of patients, it can look for distinguishing 
characteristics of those patients, such as certain genes.That 
paves the way for a precision-medicine approach, meaning 
patients can be tested before they take the drug to determine 
whether it is likely to be effective for them. 

The most exciting drug to come out of Berg’s work—
and perhaps the most exciting to emerge from any drug-
discovery-related AI effort to date—is a cancer drug called 
BPM31510. It recently completed a phase 2 trial for pa-
tients with advanced pancreatic cancer, which is extremely 
aggressive and difficult to treat. Phase 1 trials often do not 
indicate much about a drug’s potential except whether it is 
dangerously toxic at a given dose, but BPM31510’s phase 1 
trial against other cancers provided some verification of the 
ability of Berg’s software to predict the roughly 20 percent 
of patients who were likely to respond to it, as well as those 
who were more likely to experience adverse reactions. 

Additionally, tissue-sample analysis from the trial led 
Berg’s software to predict, counterintuitively, that the drug 
would work best against more aggressive cancers because it 
attacks mechanisms that play a larger role in those cancers. 
Should the drug gain approval, Berg might do a postmarket 
analysis of perhaps one out of 100 patients taking it, “so that 
we can keep improving how it’s used,” Narain says.

Berg is partnering with pharma giant AstraZeneca to 
seek targets for Parkinson’s and other neurological diseases 
and with Sanofi Pasteur to pursue improved flu vaccines. It 
is also working with the U.S. Department of Veterans Af-
fairs and the Cleveland Clinic on targets for prostate can-
cer. The software has already identified mechanisms for di-
agnostic tests that could differentiate prostate cancer from 
benignly enlarged prostates, which currently is often diffi-
cult to do without surgery. 

GETTING BEYOND THE HYPE
BIG PHARMA’S INTEREST  in injecting these kinds of AI efforts 
into drug discovery can be gauged by the fact that at least 20 
separate partnerships have been reported between the major 
companies and AI-drug-discovery tech companies. Pfizer, 
GlaxoSmithKline and Novartis are among the pharma com-
panies said to have also built substantial AI expertise in-house, 
and it is likely that others are in the process of doing the same.

Although research executives at these companies have 
expressed enthusiasm for some of the early results, they are 
quick to admit that AI is no sure thing for the bottom line 
given how few new AI-aided candidates have made it to the 
animal-testing stage of drug development, let alone to hu-
man trials. The jury is out on whether AI will successfully 
make drug discovery more efficient, says Sara Kenkare- 
Mitra, senior vice president of development sciences at 
Roche subsidiary Genentech, and even if it does, “we can’t 
yet say whether it will be an incremental improvement or an 
exponential leap.” If many of the drugs that result from AI 
efforts make it well into human testing, this question will 
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lions of dollars it takes to develop a drug to a few weeks and 
a few hundred thousand dollars. “It’s simply not true,” he 
says. “And it’s irresponsible and destructive to say so.”

But if hype hurts, Kurji insists he also knows what will 
give the AI-drug-discovery industry a big boost: more high-
quality information to feed the various programs. “We rely 
on three things: data, data and more data,” he says. That sen-
timent is echoed by Enoch Huang, vice president of medici-
nal sciences at Pfizer, who says that having the right algo-
rithm isn’t the most important factor.

The need to feed AI software with large volumes of rele-
vant data is actually starting to change science, as researchers 
run more experiments specifically with the production of 
AI-relevant data in mind. Genentech’s Kenkare-Mitra notes 
that this has already happened in immunotherapy drug re-
search. “There aren’t always enough data from the clinic to 
use with machine learning,” she says. “But we can [often] 
generate that data in vitro and feed them to the system.”

That kind of approach could lead to a virtuous cycle in 
drug discovery in which AI helps elucidate areas where re-
searchers need to look for targets and drugs. Moreover, the 
resulting research provides larger, more relevant data sets 
that allow the software to point to even more fertile research 
avenues. “It’s not so much AI we believe in,” Kenkare-Mitra 
says, “as a human-AI partnership.” 

David H. Freedman  is a journalist who has been covering 
science, business and technology for more than 30 years.

still not be answered fully unless the drugs progress all the 
way through to fda approval.

Bristol-Myers Squibb’s Saha suggests that AI-aided drugs’ 
rate of entry into the market is likely to remain low for some 
time. That rate could pick up dramatically, however, if the 
processes for testing and approval were streamlined to take 
into account the ability of machine- and deep-learning sys-
tems to more accurately predict which drugs are highly like-
ly to be safe and effective and which patients they are best 
suited for. “When regulatory agencies see the same value we 
see in AI, the flood gates could open,” he says. “In some cas-
es, we might be allowed to pass over animal models and go 
straight to human testing once we show these drugs can hit 
their targets with no toxicity.” But those changes are proba-
bly many years away, he admits. He adds that it is wrong to 
imply that AI replaces scientists and conventional re-
search—whereas AI supports and amplifies human efforts, 
it still depends on humans to generate novel biological in-
sights, set research directions and priorities, guide and vali-
date results, and produce needed data.

The breathless hype around AI-based drug discovery 
might actually be damaging, Berg’s Narain says, because 
overpromising could lead to disappointment and backlash. 
“These are early days, and we need to be sober about the 
fact that these are tools that can help—they’re not solu-
tions yet,” he says. Cyclica’s Kurji points the finger at AI 
companies that make what he says are exaggerated market-
ing claims, such as having reduced the many years and bil-
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Speeding Up the 
Search for Drugs 
The drug-discovery process typically starts 
with the identification of a “target” protein in-
volved in a disease. The goal is to find a com-
pound that can bind to the protein to interrupt 
the disease process. Given a target, Exscien-
tia’s AI software can predict which com-
pounds are likely to bind to the protein, as well 
as what further tests could narrow the list 
enough to progress to advanced testing.
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ready to generate a manageable list of compounds that are 
favorable drug candidates for the target. 

Hopkins claims that Exscientia’s process can cut the 
time spent in discovery from 4.5 years to as little as one year, 
reduces discovery costs by 80 percent and results in one-
fifth the number of synthesized compounds as is normally 
needed to produce a single winning drug. Exscientia is part-
nering with biotech giant Celgene in an effort to find new 
potential drugs for three targets. 

Meanwhile an Exscientia partnership with GlaxoSmith-
Kline has led to what the companies say is a promising mol-
ecule targeting a novel pathway to treat chronic obstructive 
pulmonary disease. But as with any AI company addressing 
drug development, Exscientia simply has not been in the 
game long enough to have generated enough new candi-
dates that could have made it through to late-stage trials—a 
process that typically takes five to eight years. Hopkins 
claims one of the candidates Exscientia has identified may 
reach human trials as early as this year. “At the end of the day 
we’ll be judged on the drugs we deliver,” he says. 

THE NEED FOR NEW TARGETS 
FINDING A MOLECULE  to hit a new target is not the only ma-
jor challenge in drug discovery. There is also the need to iden-
tify targets in the first place. To spot proteins that might have 
roles in diseases, biopharma company Berg applies AI to sift 
through information derived from human tissue samples. 
This approach aims to solve two problems that hang over 
most research into drug targets, according to Berg’s CEO 
Niven R. Narain: the efforts tend to be based on a research-
er’s theory or hunch, which can bias the results and overly re-
strict the pool of candidates, and they often turn up targets 
that are correlated to the disease but do not ultimately prove 
causative, which means drugging them will not help. 

Berg’s approach involves plugging in every piece of data 
that can be wrung out of a patient’s tissue samples, organ 
fluids and bloodwork. These extracted data include genom-
ics, proteomics, metabolomics, lipidomics, and more—an 
unusually broad range to consider in a hunt for targets. 
Samples are taken from people with and without a particu-
lar disease and at different stages of disease progression. 
Living cells from the samples are exposed in the laboratory 
to various compounds and conditions, such as low levels of 
oxygen or high levels of glucose. This method produces 
data on corresponding changes ranging from a cell’s ability 
to produce energy to the rigidity of its membrane. 

All the data are then run through a set of deep-learning 
programs that search for any differences between nondisease 
and disease states, with an eye to eventually focusing on pro-
teins whose presence seem to have an impact on the disease. 
In some cases, those proteins become candidates as targets, 
at which point Berg’s software can start searching for com-
pounds to drug those targets. What is more, because the 
software can discern when the target seems to cause disease 
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in only a subset of patients, it can look for distinguishing 
characteristics of those patients, such as certain genes.That 
paves the way for a precision-medicine approach, meaning 
patients can be tested before they take the drug to determine 
whether it is likely to be effective for them. 

The most exciting drug to come out of Berg’s work—
and perhaps the most exciting to emerge from any drug-
discovery-related AI effort to date—is a cancer drug called 
BPM31510. It recently completed a phase 2 trial for pa-
tients with advanced pancreatic cancer, which is extremely 
aggressive and difficult to treat. Phase 1 trials often do not 
indicate much about a drug’s potential except whether it is 
dangerously toxic at a given dose, but BPM31510’s phase 1 
trial against other cancers provided some verification of the 
ability of Berg’s software to predict the roughly 20 percent 
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lions of dollars it takes to develop a drug to a few weeks and 
a few hundred thousand dollars. “It’s simply not true,” he 
says. “And it’s irresponsible and destructive to say so.”

But if hype hurts, Kurji insists he also knows what will 
give the AI-drug-discovery industry a big boost: more high-
quality information to feed the various programs. “We rely 
on three things: data, data and more data,” he says. That sen-
timent is echoed by Enoch Huang, vice president of medici-
nal sciences at Pfizer, who says that having the right algo-
rithm isn’t the most important factor.

The need to feed AI software with large volumes of rele-
vant data is actually starting to change science, as researchers 
run more experiments specifically with the production of 
AI-relevant data in mind. Genentech’s Kenkare-Mitra notes 
that this has already happened in immunotherapy drug re-
search. “There aren’t always enough data from the clinic to 
use with machine learning,” she says. “But we can [often] 
generate that data in vitro and feed them to the system.”

That kind of approach could lead to a virtuous cycle in 
drug discovery in which AI helps elucidate areas where re-
searchers need to look for targets and drugs. Moreover, the 
resulting research provides larger, more relevant data sets 
that allow the software to point to even more fertile research 
avenues. “It’s not so much AI we believe in,” Kenkare-Mitra 
says, “as a human-AI partnership.” 

David H. Freedman  is a journalist who has been covering 
science, business and technology for more than 30 years.

still not be answered fully unless the drugs progress all the 
way through to fda approval.

Bristol-Myers Squibb’s Saha suggests that AI-aided drugs’ 
rate of entry into the market is likely to remain low for some 
time. That rate could pick up dramatically, however, if the 
processes for testing and approval were streamlined to take 
into account the ability of machine- and deep-learning sys-
tems to more accurately predict which drugs are highly like-
ly to be safe and effective and which patients they are best 
suited for. “When regulatory agencies see the same value we 
see in AI, the flood gates could open,” he says. “In some cas-
es, we might be allowed to pass over animal models and go 
straight to human testing once we show these drugs can hit 
their targets with no toxicity.” But those changes are proba-
bly many years away, he admits. He adds that it is wrong to 
imply that AI replaces scientists and conventional re-
search—whereas AI supports and amplifies human efforts, 
it still depends on humans to generate novel biological in-
sights, set research directions and priorities, guide and vali-
date results, and produce needed data.

The breathless hype around AI-based drug discovery 
might actually be damaging, Berg’s Narain says, because 
overpromising could lead to disappointment and backlash. 
“These are early days, and we need to be sober about the 
fact that these are tools that can help—they’re not solu-
tions yet,” he says. Cyclica’s Kurji points the finger at AI 
companies that make what he says are exaggerated market-
ing claims, such as having reduced the many years and bil-
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Speeding Up the 
Search for Drugs 
The drug-discovery process typically starts 
with the identification of a “target” protein in-
volved in a disease. The goal is to find a com-
pound that can bind to the protein to interrupt 
the disease process. Given a target, Exscien-
tia’s AI software can predict which com-
pounds are likely to bind to the protein, as well 
as what further tests could narrow the list 
enough to progress to advanced testing.
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WHEN REGINA BARZILAY  had a routine 
mammogram in her early 40s, the  
image showed a complex array of white 
splotches in her breast tissue. The marks 
could be normal, or they could be can­
cerous—even the best radiologists often 
struggle to tell the difference. Her doctors 
decided the spots were not immediately 
worrisome. In hindsight, she says, “I 
already had cancer, and they didn’t see it.” 

Over the next two years Barzilay underwent a second 
mammogram, a breast MRI and a biopsy, all of which con­
tinued to yield ambiguous or conflicting findings. Ulti­
mately she was diagnosed with breast cancer in 2014, but 
the path to that diagnosis had been unbelievably frustrat­
ing. “How do you do three tests and get three different re­
sults?” she wondered. 

Barzilay was treated and made a good recovery. But she 
remained horrified that the uncertainties of reading a 
mammogram could delay treatment. “I realized to what 
extent we are unprotected with current approaches,” she 

says, so she made a career­altering decision: “I absolutely 
have to change it.” 

A computer scientist at Massachusetts Institute of 
Technology, Barzilay had never studied health before. Her 
research used machine­learning techniques—a form of ar­
tificial intelligence—for natural­language processing. But 
she had been looking for a new line of research and decid­
ed to team up with radiologists to develop machine­learn­
ing algorithms that use computers’ superior visual analysis 
to spot subtle patterns in mammograms that the human 
eye might miss. 

Over the next four years the team taught a computer 
program to analyze mammograms from about 32,000 
women of different ages and races and told it which wom­
en had been diagnosed with cancer within five years of the 
scan. They then tested the computer’s matching abilities in 
3,800 more patients. Their resulting algorithm, published 
last May in  Radiology,  was significantly more accurate at 
predicting cancer—or the absence of cancer—than prac­
tices generally used in clinics. When Barzilay’s team ran the 
program on her own mammograms from 2012—ones her 
doctor had cleared—the algorithm correctly predicted she 
was at a higher risk of developing breast cancer within five 
years than 98 percent of patients. 

AI algorithms not only spot details too subtle for the 
human eye to see. They can also develop entirely new ways 
of interpreting medical images, sometimes in ways humans 
do not understand. The numerous researchers, start­up 
companies and scanner manufacturers designing AI pro­
grams hope they can improve the accuracy and timeliness 
of diagnoses, provide better treatment in developing coun­
tries and remote regions that lack radiologists, reveal new 
links between biology and disease, and even help to predict 
how soon a person will die. 

AI applications are entering clinics at a rapid rate, and 
physicians have met the technology with equal parts ex­
citement about its potential to reduce their workload and 
fear about losing their jobs to machines. Algorithms also 
raise unprecedented questions about how to regulate a ma­
chine that is constantly learning and changing and who is 
to blame if an algorithm gets a diagnosis wrong. Still, many 
physicians are excited about the promise of AI programs. 
“If these models can be sufficiently vetted and we can raise 
our level of understanding of how they work, this can help 
raise the level of health care for everybody,” says Matthew 
Lungren, a radiologist at Stanford University. 

“A VERY, VERY HOT TOPIC” 
THE IDEA OF  using computers to read radiological scans is not 
new. In the 1990s radiologists started using a program called 
computer­assisted diagnosis (CAD) to detect breast cancer in 
mammograms. The technology was hailed as revolutionary, 
and clinics adopted it rapidly. But CAD proved to be more 
time­consuming and difficult to use than existing methods, 

Rise of Robot 
Radiologists 
Deep-learning algorithms  
are peering into MRIs and  
x-rays with unmatched vision, 
but who is to blame when  
they make a mistake?

By Sara Reardon 
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and according to some studies, clinics that used it made more 
errors than those that did not. The failure made many physi-
cians dubious of computer-aided diagnostics, says Vijay Rao, 
a radiologist at Jefferson University in Philadelphia. 

In the past decade, however, computer vision has im-
proved by leaps and bounds—in everyday applications such 
as face recognition and in medicine. The advance has been 
largely driven by the development of deep-learning meth-
ods, in which a computer is given a set of images and then 
left to draw its own connections between them, ultimately 
developing a network of associations. In medical imaging, 
this might, for example, involve telling the computer which 
images contain cancer and setting it free to find features 
common to those images but absent in cancer-free images. 

Development and adoption of AI technologies in radi-
ology has spread rapidly. “Last year, at every large meeting I 
went to, the main theme was AI and imaging,” says Rao, 
past president of the Radiological Society of North Ameri-
ca. “Clearly, this is a very, very hot topic.”

The U.S. Food and Drug Administration says that it 
does not keep a list of AI products that it has approved. But 
Eric Topol, a digital medicine researcher at the Scripps Re-
search Institute in La Jolla, Calif., estimates that the agency 
is approving more than one medical imaging algorithm per 
month. A 2018 survey by marketing-intelligence firm Re-
action Data found that 84 percent of U.S. radiology clinics 
had adopted or planned to adopt AI programs. The field is 
growing especially quickly in China, where more than 100 
companies are designing AI applications for health care. 

“It’s a fascinating time to be in this market,” says Elad 
Walach, CEO of the Tel Aviv–based start-up Aidoc. The 
company develops algorithms to analyze CT scans for ab-
normalities and move those patients to the top of a doctor’s 
priority list. Aidoc also tracks how often doctors use the pro-
gram and how long they spend second-guessing its con-
clusions. “Initially they’re skeptical, but after two months 
they get used to it and are very trusting,” Walach says. 

Saving time can be crucial to saving a patient. One re-
cent study of chest x-rays for collapsed lungs found that ra-
diologists flag more than 60 percent of the scans they order 
as high priority, which suggests that they might spend 
hours wading through nonserious cases before getting to 
those that are actually urgent. “Every doctor I talk to has a 
story where they lost a patient because of a collapsed lung,” 
says Karley Yoder, vice president and general manager of AI 
at Boston-based GE Healthcare, one of the leading manu-
facturers of medical imaging equipment. Last September 
the fda approved a set of AI tools that will now come em-
bedded in GE scanners, automatically flagging the most 
urgent cases. 

Because they can process massive amounts of data, 
computers can perform analytical tasks that are beyond hu-
man capability. Google, for instance, is using its computing 
power to develop AI algorithms that construct two-dimen-

sional CT images of lungs into a three-dimensional lung 
and look at the entire structure to determine whether can-
cer is present. Radiologists, in contrast, have to look at 
these images individually and attempt to reconstruct them 
in their heads. Another Google algorithm can do some-
thing radiologists cannot do at all: determine patients’ risk 
of cardiovascular disease by looking at a scan of their reti-
nas, picking up on subtle changes related to blood pressure, 
cholesterol, smoking history and aging. “There’s potential 
signal there beyond what was known before,” says Google 
product manager Daniel Tse.

THE BLACK BOX PROBLEM
AI PROGRAMS COULD END UP  revealing entirely new links 
between biological features and patient outcomes. A 2019 
paper in  JAMA Network Open  described a deep-learning al-
gorithm trained on more than 85,000 chest x-rays from peo-
ple enrolled in two large clinical trials that had tracked them 
for more than 12 years. The algorithm scored each patient’s 
risk of dying during this period. The researchers found that 
53 percent of the people the AI put into a high-risk catego-
ry died within 12 years, as opposed to 4 percent in the low-
risk category. The algorithm did not have information on 
who died or on the cause of death. The lead investigator, ra-
diologist Michael Lu of Massachusetts General Hospital, says 
that the algorithm could be a helpful tool for assessing pa-
tient health if combined with a physician’s assessment and 
other data such as genetics. 

To understand how the algorithm worked, the research-
ers identified the parts of images that it used to make its cal-
culations. Some, such as waist circumference and the struc-
ture of women’s breasts, made sense because these areas can 
hint at known risk factors for certain diseases. But the algo-
rithm also looked at the region under patients’ shoulder 
blades, which has no known medical significance. Lu guess-
es that flexibility might be one predictor of a shorter life 
span. Taking a chest x-ray often requires patients to hug the 
machine, and less healthy people who cannot put their arms 
all the way around it might position their shoulders in a dif-
ferent way. “They’re not things I would have thought of de 
novo and might not understand,” Lu says. 

The disconnect between the way computers and hu-
mans think is known as the black box problem: the idea 
that a computer brain operates in an obscured space that is 
inaccessible to humans. Experts differ on whether this pre-
sents a problem in medical imaging. On the one hand, if an 
algorithm consistently improves doctors’ performance and 
patients’ health, doctors do not need to know how it works. 
After all, researchers still do not fully understand the mech-
anisms of many drugs such as lithium, which has been used 
to treat depression since the 1950s. “Maybe we shouldn’t 
be so fixated, because the way humans work in medicine is 
about as black box as you can get,” Topol says. “Do we hold 
machines to a higher standard?”

AI AND DIGITAL HEALTH
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Still, there is no denying that the black box pre­
sents ample opportunity for human­AI misunder­
standing. For instance, researchers at the Icahn 
School of Medicine at Mount Sinai were deeply 
puzzled by a discrepancy in the performance of a 
deep­learning algorithm they had developed to 
identify pneumonia in lung  x­rays. It performed 
with greater than 90 percent accuracy on x­rays produced 
at Mount Sinai but was far less accurate with scans from 
other institutions. They eventually figured out that instead 
of just analyzing the images, the algorithm was also factor­
ing in the odds of a positive finding based on how common 
pneumonia was at each institution—not something they 
expected or wanted the program to do.

Confounding factors like these worry Samuel Finlayson, 
who studies biomedical applications of machine learning at 
Harvard Medical School. He notes that data sets on which 
AI is trained can be biased in ways that developers fail to 
consider. An image taken in an emergency room or one tak­
en in the middle of the night may be more likely to show a 
sick person than one taken during a routine examination, 
for instance. An algorithm could also learn to look at scars or 
medical device implants that indicate a previous health 
problem and decide that people without these marks did not 
have the condition. Even the way that institutions label their 
images can confuse an AI algorithm and prevent the model 
from functioning well in another institution with a different 
labeling system. “If you naively train [an algorithm] at a hos­
pital from one location, one time, and one population 
group, you’re unaware of all the thousands of little factors 
that models are taking into account. If any of those change, 
you can be in for a world of hurt,” Finlayson warns. 

The solution, Finlayson says, is to train an algorithm 
with data from many locations and in diverse patient popu­
lations, then test it prospectively—without any modifica­
tions—in a new patient population. But very few algo­
rithms have been tested this way. According to Topol’s re­
cent Nature Medicine review, among dozens of studies 
claiming an AI performs better than radiologists, only a 
handful were tested in populations that were different from 
the population where they were developed. “Algorithms are 
very, very delicate,” says Cynthia Rudin, a computer scien­
tist at Duke University. “If you try to use one outside the 
training set [of images], it doesn’t always work.”

As researchers become aware of this problem, more pro­
spective studies in novel settings could be on the horizon. 
Barzilay’s team recently finished testing its mammogram AI 
on 10,000 scans from the Karolinska Institute in Sweden 
and found that it performed just as well there as it did in 
Massachusetts. The group is now working with hospitals in 
Taiwan and Detroit to test it in more diverse patient groups. 
The team found that current standards for assessing breast 
cancer risk are much less accurate in African­American 
women, Barzilay says, because those standards were devel­

oped mostly using scans from white women: “I think we re­
ally are in a position to revamp this sad state of affairs.”

LEGAL TERRA INCOGNITA 
EVEN IF THE AI’S  conclusions are medically relevant, the 
black box still presents a number of concerns from a legal 
perspective. If an AI gets a diagnosis wrong, it can be hard to 
determine whether the doctor or the program is at fault. 
“Lots of bad things happen in health care, and you don’t nec­
essarily know why the bad things happened,” says Nichol­
son Price, a health law expert at the University of Michigan. 
If an AI system leads a physician to make an incorrect diag­
nosis, the physician may not be able to explain why and the 
company’s data on the test’s methodology are likely to be a 
closely guarded trade secret. 

Medical AI systems are still too new to have been chal­
lenged in medical malpractice lawsuits, so it is unclear how 
courts will determine responsibility and what kind of trans­
parency should be required.

The tendency to build black box algorithms frustrates 
Rudin. The problem comes from the fact that most medi­
cal algorithms are built by adapting deep­learning tools de­
veloped for other types of image analysis. “There’s no rea­
son you can’t build a robot that can explain itself,” she in­
sists. But it is exponentially harder to build a transparent 
algorithm from scratch than to repurpose an existing black 
box algorithm to look at medical data. That is why Rudin 
suspects most researchers let an algorithm run and then try 
to understand later how it came to its conclusion. 

Rudin is developing transparent AI algorithms that an­
alyze mammograms for suspected tumors and constantly 
inform researchers what they are doing. But her research 
has been stymied by the lack of available images on which 
to train the algorithm. The images that are publicly avail­
able tend to be poorly labeled or taken with old machines 
that are no longer in use, Rudin says, and without enor­
mous, diverse data sets, algorithms tend to pick up con­
founding factors. 

Black boxes, along with an AI algorithm’s ability to 
learn from experience, also present challenges to regulators. 
Unlike a drug, which will always work in the same way, 
machine­learning algorithms change and improve over 
time as they gain access to more patient data. Because the 
algorithm draws meaning from so many kinds of input, 
seemingly innocuous changes such as a new IT system at a 
hospital could suddenly ruin the AI program. “Machines 
can get sick just like humans get sick, and they can be in­

“AI won’t replace radiologists, but radiologists
who use AI will replace radiologists who don’t.” 
  — Curtis Langlotz, Stanford University
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cholesterol, smoking history and aging. “There’s potential 
signal there beyond what was known before,” says Google 
product manager Daniel Tse.

THE BLACK BOX PROBLEM
AI PROGRAMS COULD END UP  revealing entirely new links 
between biological features and patient outcomes. A 2019 
paper in  JAMA Network Open  described a deep-learning al-
gorithm trained on more than 85,000 chest x-rays from peo-
ple enrolled in two large clinical trials that had tracked them 
for more than 12 years. The algorithm scored each patient’s 
risk of dying during this period. The researchers found that 
53 percent of the people the AI put into a high-risk catego-
ry died within 12 years, as opposed to 4 percent in the low-
risk category. The algorithm did not have information on 
who died or on the cause of death. The lead investigator, ra-
diologist Michael Lu of Massachusetts General Hospital, says 
that the algorithm could be a helpful tool for assessing pa-
tient health if combined with a physician’s assessment and 
other data such as genetics. 

To understand how the algorithm worked, the research-
ers identified the parts of images that it used to make its cal-
culations. Some, such as waist circumference and the struc-
ture of women’s breasts, made sense because these areas can 
hint at known risk factors for certain diseases. But the algo-
rithm also looked at the region under patients’ shoulder 
blades, which has no known medical significance. Lu guess-
es that flexibility might be one predictor of a shorter life 
span. Taking a chest x-ray often requires patients to hug the 
machine, and less healthy people who cannot put their arms 
all the way around it might position their shoulders in a dif-
ferent way. “They’re not things I would have thought of de 
novo and might not understand,” Lu says. 

The disconnect between the way computers and hu-
mans think is known as the black box problem: the idea 
that a computer brain operates in an obscured space that is 
inaccessible to humans. Experts differ on whether this pre-
sents a problem in medical imaging. On the one hand, if an 
algorithm consistently improves doctors’ performance and 
patients’ health, doctors do not need to know how it works. 
After all, researchers still do not fully understand the mech-
anisms of many drugs such as lithium, which has been used 
to treat depression since the 1950s. “Maybe we shouldn’t 
be so fixated, because the way humans work in medicine is 
about as black box as you can get,” Topol says. “Do we hold 
machines to a higher standard?”
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Still, there is no denying that the black box pre­
sents ample opportunity for human­AI misunder­
standing. For instance, researchers at the Icahn 
School of Medicine at Mount Sinai were deeply 
puzzled by a discrepancy in the performance of a 
deep­learning algorithm they had developed to 
identify pneumonia in lung  x­rays. It performed 
with greater than 90 percent accuracy on x­rays produced 
at Mount Sinai but was far less accurate with scans from 
other institutions. They eventually figured out that instead 
of just analyzing the images, the algorithm was also factor­
ing in the odds of a positive finding based on how common 
pneumonia was at each institution—not something they 
expected or wanted the program to do.

Confounding factors like these worry Samuel Finlayson, 
who studies biomedical applications of machine learning at 
Harvard Medical School. He notes that data sets on which 
AI is trained can be biased in ways that developers fail to 
consider. An image taken in an emergency room or one tak­
en in the middle of the night may be more likely to show a 
sick person than one taken during a routine examination, 
for instance. An algorithm could also learn to look at scars or 
medical device implants that indicate a previous health 
problem and decide that people without these marks did not 
have the condition. Even the way that institutions label their 
images can confuse an AI algorithm and prevent the model 
from functioning well in another institution with a different 
labeling system. “If you naively train [an algorithm] at a hos­
pital from one location, one time, and one population 
group, you’re unaware of all the thousands of little factors 
that models are taking into account. If any of those change, 
you can be in for a world of hurt,” Finlayson warns. 

The solution, Finlayson says, is to train an algorithm 
with data from many locations and in diverse patient popu­
lations, then test it prospectively—without any modifica­
tions—in a new patient population. But very few algo­
rithms have been tested this way. According to Topol’s re­
cent Nature Medicine review, among dozens of studies 
claiming an AI performs better than radiologists, only a 
handful were tested in populations that were different from 
the population where they were developed. “Algorithms are 
very, very delicate,” says Cynthia Rudin, a computer scien­
tist at Duke University. “If you try to use one outside the 
training set [of images], it doesn’t always work.”

As researchers become aware of this problem, more pro­
spective studies in novel settings could be on the horizon. 
Barzilay’s team recently finished testing its mammogram AI 
on 10,000 scans from the Karolinska Institute in Sweden 
and found that it performed just as well there as it did in 
Massachusetts. The group is now working with hospitals in 
Taiwan and Detroit to test it in more diverse patient groups. 
The team found that current standards for assessing breast 
cancer risk are much less accurate in African­American 
women, Barzilay says, because those standards were devel­

oped mostly using scans from white women: “I think we re­
ally are in a position to revamp this sad state of affairs.”

LEGAL TERRA INCOGNITA 
EVEN IF THE AI’S  conclusions are medically relevant, the 
black box still presents a number of concerns from a legal 
perspective. If an AI gets a diagnosis wrong, it can be hard to 
determine whether the doctor or the program is at fault. 
“Lots of bad things happen in health care, and you don’t nec­
essarily know why the bad things happened,” says Nichol­
son Price, a health law expert at the University of Michigan. 
If an AI system leads a physician to make an incorrect diag­
nosis, the physician may not be able to explain why and the 
company’s data on the test’s methodology are likely to be a 
closely guarded trade secret. 

Medical AI systems are still too new to have been chal­
lenged in medical malpractice lawsuits, so it is unclear how 
courts will determine responsibility and what kind of trans­
parency should be required.

The tendency to build black box algorithms frustrates 
Rudin. The problem comes from the fact that most medi­
cal algorithms are built by adapting deep­learning tools de­
veloped for other types of image analysis. “There’s no rea­
son you can’t build a robot that can explain itself,” she in­
sists. But it is exponentially harder to build a transparent 
algorithm from scratch than to repurpose an existing black 
box algorithm to look at medical data. That is why Rudin 
suspects most researchers let an algorithm run and then try 
to understand later how it came to its conclusion. 

Rudin is developing transparent AI algorithms that an­
alyze mammograms for suspected tumors and constantly 
inform researchers what they are doing. But her research 
has been stymied by the lack of available images on which 
to train the algorithm. The images that are publicly avail­
able tend to be poorly labeled or taken with old machines 
that are no longer in use, Rudin says, and without enor­
mous, diverse data sets, algorithms tend to pick up con­
founding factors. 

Black boxes, along with an AI algorithm’s ability to 
learn from experience, also present challenges to regulators. 
Unlike a drug, which will always work in the same way, 
machine­learning algorithms change and improve over 
time as they gain access to more patient data. Because the 
algorithm draws meaning from so many kinds of input, 
seemingly innocuous changes such as a new IT system at a 
hospital could suddenly ruin the AI program. “Machines 
can get sick just like humans get sick, and they can be in­

“AI won’t replace radiologists, but radiologists
who use AI will replace radiologists who don’t.” 
  — Curtis Langlotz, Stanford University
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fected with malware,” Topol says. “You can’t trust an algo-
rithm when you have someone’s life on the line.” 

Last April the fda proposed a set of guidelines to manage 
algorithms that evolve over time. Among them is an expecta-
tion that producers keep an eye on how their algorithms are 
changing to ensure they continue to work as designed and 
asking them to notify the agency if they see unexpected 
changes that might prompt reevaluation. � e agency is also 
developing best manufacturing practices and may require 
companies to spell out their expectations for how algorithms 
might change and a protocol for how to manage those 
changes. “We need to understand that not one size � ts all,” 
says Bakul Patel, director of digital health at the fda. 

WILL MACHINES REPLACE DOCTORS?
THE LIMITATIONS OF AI  should reassure radiologists who wor-
ry about machines taking their jobs. In 2012 technology ven-
ture capitalist and Sun Microsystems co-founder Vinod 
Khos la horri� ed a medical audience by predicting that algo-
rithms would replace 80 percent of doctors, and more re-
cently he claimed that radiologists still practicing in 10 years 
will be “killing patients.” Such remarks caused panic and 
backlash in the radiology � eld, Rao says. “I think the hype is 
creating a lot of expectations.”

But that concern has also had real impacts. In 2015 
only 86 percent of radiology resident positions in the U.S. 
were � lled, compared with 94 percent the previous year, al-
though those numbers have improved over the past several 
years. And according to a 2018 survey of 322 Canadian 
medical students, 68 percent believed AI would reduce the 
demand for radiologists. 

Still, most experts and AI manufacturers doubt AI will 
be replacing doctors any time soon. “AI solutions are be-
coming very good at doing one thing very well,” Walach 
says. But because human biology is complex, he says, “you 
typically have to have humans who do more than one thing 
really well.” In other words, even if an algorithm is better at 
diagnosing a particular problem, combining it with a phy-
sician’s experience and knowledge of the patient’s individu-
al story will lead to a better outcome. 

An AI that can do a single task well could free radiolo-
gists from drudgework, allowing them more time to inter-
act with patients. “� ey could come out of the basement, 
which is where they live in the dark,” Topol says. “What we 
need in medicine is more interhuman contact and bonding.”

Still, Rao and others believe that the tools and training 
that radiologists receive, including their day-to-day work, 
will change drastically over the coming years as a result of 
arti� cial-intelligence algorithms. “AI won’t replace radiol-

ogists, but radiologists who use AI will replace radi-
ologists who don’t,” says Curtis Langlotz, a radiolo-
gist at Stanford.

� ere are some exceptions, however. In 2018 the 
fda approved the � rst algorithm that can make a 

medical decision without the need for a physician to look 
at the image. � e program, developed by IDx Technology 
in Coralville, Iowa, looks at retinal images to detect diabet-
ic retinopathy and is 87 percent accurate, according to the 
company’s data. IDx chief executive o�  cer Michael 
Abramo�  says that because no doctor is involved, the com-
pany has assumed legal liability for any medical errors.

In the short term, AI algorithms are more likely to assist 
doctors than replace them. For instance, physicians work-
ing in developing countries might not have access to the 
same kinds of scanners as a major medical institution in the 
U.S. or Europe or trained radiologists who can interpret 
scans. As medicine becomes more specialized and depen-
dent on image analysis, the gap between the standard of 
care provided in wealthier and poorer areas is growing, 
Lungren says. Running an algorithm can be a cheap way to 
close that gap and may even be done on a mobile phone. 

Lungren’s group is developing a tool that allows doctors 
to take cell-phone pictures of an  x-ray � lm—not the digi-
tal scans that are standard in wealthy nations—and run an 
algorithm on the photographs that detects problems such 
as tuberculosis. “It’s not replacing anybody,” he says—many 
developing countries have no radiologists in the � rst place. 
“We’re augmenting nonradiologists to bring expertise to 
their � ngertips.” 

Another short-term goal of AI could be to examine 
medical records to determine whether a patient needs a 
scan in the � rst place, Rao says. Many medical econo-
mists believe that imaging is overused—more than 
80 million CT scans are performed every year in the U.S. 
alone. Although this abundance of data is helpful to re-
searchers using it to train algorithms, scans are extraordi-
narily costly and can expose patients to unnecessary 
amounts of radiation. Similarly, Langlotz adds that algo-
rithms could one day analyze images while a patient is 
still in the scanner and predict the � nal outcome, thus re-
ducing the amount of time and radiation exposure re-
quired to get a good image. 

Ultimately, Barzilay says, AI will be most useful when it 
serves as a sharp-eyed partner in tackling problems that doc-
tors cannot detect and solve alone. “If there were a conve-
nient and describable pattern,” she notes, “humans would 
already be able to do it.” She knows � rsthand that, too of-
ten, this is not the case. 

Sara Reardon  is a freelance journalist based in 
Bozeman, Mont. She is a former staff reporter at  Nature, 
New Scientist  and  Science  and has a master’s degree 
in molecular biology.

“You can’t trust an algorithm when someone’s 
life is on the line.” — Eric Topol, Scripps Research
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fected with malware,” Topol says. “You can’t trust an algo-
rithm when you have someone’s life on the line.” 

Last April the fda proposed a set of guidelines to manage 
algorithms that evolve over time. Among them is an expecta-
tion that producers keep an eye on how their algorithms are 
changing to ensure they continue to work as designed and 
asking them to notify the agency if they see unexpected 
changes that might prompt reevaluation. � e agency is also 
developing best manufacturing practices and may require 
companies to spell out their expectations for how algorithms 
might change and a protocol for how to manage those 
changes. “We need to understand that not one size � ts all,” 
says Bakul Patel, director of digital health at the fda. 

WILL MACHINES REPLACE DOCTORS?
THE LIMITATIONS OF AI  should reassure radiologists who wor-
ry about machines taking their jobs. In 2012 technology ven-
ture capitalist and Sun Microsystems co-founder Vinod 
Khos la horri� ed a medical audience by predicting that algo-
rithms would replace 80 percent of doctors, and more re-
cently he claimed that radiologists still practicing in 10 years 
will be “killing patients.” Such remarks caused panic and 
backlash in the radiology � eld, Rao says. “I think the hype is 
creating a lot of expectations.”

But that concern has also had real impacts. In 2015 
only 86 percent of radiology resident positions in the U.S. 
were � lled, compared with 94 percent the previous year, al-
though those numbers have improved over the past several 
years. And according to a 2018 survey of 322 Canadian 
medical students, 68 percent believed AI would reduce the 
demand for radiologists. 

Still, most experts and AI manufacturers doubt AI will 
be replacing doctors any time soon. “AI solutions are be-
coming very good at doing one thing very well,” Walach 
says. But because human biology is complex, he says, “you 
typically have to have humans who do more than one thing 
really well.” In other words, even if an algorithm is better at 
diagnosing a particular problem, combining it with a phy-
sician’s experience and knowledge of the patient’s individu-
al story will lead to a better outcome. 

An AI that can do a single task well could free radiolo-
gists from drudgework, allowing them more time to inter-
act with patients. “� ey could come out of the basement, 
which is where they live in the dark,” Topol says. “What we 
need in medicine is more interhuman contact and bonding.”

Still, Rao and others believe that the tools and training 
that radiologists receive, including their day-to-day work, 
will change drastically over the coming years as a result of 
arti� cial-intelligence algorithms. “AI won’t replace radiol-

ogists, but radiologists who use AI will replace radi-
ologists who don’t,” says Curtis Langlotz, a radiolo-
gist at Stanford.

� ere are some exceptions, however. In 2018 the 
fda approved the � rst algorithm that can make a 

medical decision without the need for a physician to look 
at the image. � e program, developed by IDx Technology 
in Coralville, Iowa, looks at retinal images to detect diabet-
ic retinopathy and is 87 percent accurate, according to the 
company’s data. IDx chief executive o�  cer Michael 
Abramo�  says that because no doctor is involved, the com-
pany has assumed legal liability for any medical errors.

In the short term, AI algorithms are more likely to assist 
doctors than replace them. For instance, physicians work-
ing in developing countries might not have access to the 
same kinds of scanners as a major medical institution in the 
U.S. or Europe or trained radiologists who can interpret 
scans. As medicine becomes more specialized and depen-
dent on image analysis, the gap between the standard of 
care provided in wealthier and poorer areas is growing, 
Lungren says. Running an algorithm can be a cheap way to 
close that gap and may even be done on a mobile phone. 

Lungren’s group is developing a tool that allows doctors 
to take cell-phone pictures of an  x-ray � lm—not the digi-
tal scans that are standard in wealthy nations—and run an 
algorithm on the photographs that detects problems such 
as tuberculosis. “It’s not replacing anybody,” he says—many 
developing countries have no radiologists in the � rst place. 
“We’re augmenting nonradiologists to bring expertise to 
their � ngertips.” 

Another short-term goal of AI could be to examine 
medical records to determine whether a patient needs a 
scan in the � rst place, Rao says. Many medical econo-
mists believe that imaging is overused—more than 
80 million CT scans are performed every year in the U.S. 
alone. Although this abundance of data is helpful to re-
searchers using it to train algorithms, scans are extraordi-
narily costly and can expose patients to unnecessary 
amounts of radiation. Similarly, Langlotz adds that algo-
rithms could one day analyze images while a patient is 
still in the scanner and predict the � nal outcome, thus re-
ducing the amount of time and radiation exposure re-
quired to get a good image. 

Ultimately, Barzilay says, AI will be most useful when it 
serves as a sharp-eyed partner in tackling problems that doc-
tors cannot detect and solve alone. “If there were a conve-
nient and describable pattern,” she notes, “humans would 
already be able to do it.” She knows � rsthand that, too of-
ten, this is not the case. 

Sara Reardon  is a freelance journalist based in 
Bozeman, Mont. She is a former staff reporter at  Nature, 
New Scientist  and  Science  and has a master’s degree 
in molecular biology.

“You can’t trust an algorithm when someone’s 
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A YOUNG MAN,  let’s call him Roger, arrives at the emergency department complaining of belly pain 
and nausea. A physical exam reveals that the pain is focused in the lower right portion of his abdo-
men. The doctor worries that it could be appendicitis. But by the time the imaging results come back, 
Roger is feeling better, and the scan shows that his appendix appears normal. The doctor turns to the 
computer to prescribe two medications, one for nausea and Tylenol for pain, before discharging him. 

This is one of the fictitious scenarios presented to 55 physicians 
around the country as part of a study to look at the usability of elec-
tronic health records (EHRs). To prescribe medications, a doctor has 
to locate them in the EHR system. At one hospital a simple search for 
Tylenol brings up a list of more than 80 options. Roger is a 26-year-
old man, but the list includes Tylenol for children and infants, as well 
as Tylenol for menstrual cramps. The doctor tries to winnow the list by 
typing the desired dose—500 milligrams—into the search window, 
but now she gets zero hits. So she returns to the main list and finally se-
lects the 68th option—Tylenol Extra Strength (500 mg), the most 
commonly prescribed dose of Tylenol. What should have been a sim-
ple task has taken precious minutes and far more brainpower than it 
deserved. This is just one example of the countless agonizing frustra-
tions that physicians deal with every day when they use EHRs.

These EHRs—digital versions of the paper charts in which doc-
tors used to record patients’ visits, laboratory results and other impor-
tant medical information—were supposed to transform the practice 
of medicine. The Health Information Technology for Economic and 
Clinical Health (HITECH) Act, passed in 2009, has provided $36 
billion in financial incentives to drive hospitals and clinics to transi-
tion from paper charts to EHRs. Then president Barack Obama said 
the shift would “cut waste, eliminate red tape and reduce the need to 
repeat expensive medical tests.” He added that it would “save lives by 
reducing the deadly but preventable medical errors that pervade our 
health care system.” 

When HITECH was adopted, 48  percent of physicians used 
EHRs. By 2017 that number had climbed to 85  percent, but the 
transformative power of EHRs has yet to be realized. Physicians com-
plain about clunky interfaces and time-consuming data entry. Polls 
suggest that they spend more time interacting with a patient’s file than 
with the actual patient. As a result, burnout is on the rise. Even Obama 
observed that the rollout did not go as planned. “It’s proven to be 
harder than we expected,” he told Vox in 2017.

Yet EHRs do have the potential to deliver insights and efficiencies, 
according to physicians and data scientists. Artificial intelligence in 
the form of machine learning—which allows computers to identify 
patterns in data and draw conclusions on their own—might be able to 
help overcome the obstacles encountered with EHRs and unlock their 
potential for making predictions and improving patient care. 

DIGITAL DEBACLE
IN 2016  the American Medical Association teamed up with Med Star 
Health, a health care organization that operates 10 hospitals in the Bal-
timore-Washington area, to examine the usability of two of the largest 
EHR systems, developed by Cerner, based in North Kansas City, Mo., 
and Epic, based in Verona, Wis., respectively. Together these two com-
panies account for 54 percent of the acute care hospital market. The 

team recruited emergency physicians at four hospitals and gave them 
fictitious patient data and six scenarios, including the one about Rog-
er, who presented with what seemed like appendicitis. These scenarios 
asked the physicians to perform common duties such as prescribing 
medications and ordering tests. The researchers assessed how long it 
took the physicians to complete each task, how many clicks were re-
quired and how accurately they performed. 

What they found was disheartening. The time and the number of 
clicks required varied widely from site to site and even between sites 
using the same system. And some tasks, such as tapering the dose of a 
steroid, proved exceptionally tricky across the board. Physicians had to 
manually calculate the taper doses, which took anywhere from two to 
three minutes and required 20 to 42 clicks. These design flaws were 
not benign. The physicians often made dosage mistakes. At one site 
the error rate reached 50 percent. “We’ve seen patients being harmed 
and even patients dying because of errors or issues that arise from us-
ability of the system,” says Raj Ratwani, director of MedStar Health’s 
National Center for Human Factors in Healthcare. 

But clunky interfaces are just part of the problem with EHRs. An-
other stumbling block is that information still does not flow easily be-
tween providers. The system lacks “the ability to seamlessly and auto-
matically deliver data when and where it is needed under a trusted net-
work without political, technical, or financial blocking,” according to 
a 2018 report from the National Academy of Medicine. If a patient 
changes doctors, visits urgent care or moves across the country, her re-
cords might or might not follow. “Connected care is the goal; discon-
nected care is the reality,” the authors wrote. 

In March 2018 the Harris Poll conducted an online survey on be-
half of Stanford Medicine that examined physicians’ attitudes about 
EHRs. The results were sobering. Doctors reported spending, on aver-
age, about half an hour on each patient. More than 60 percent of that 
time was spent interacting with the patient’s EHR. Half of office-
based primary care physicians think using an EHR actually diminish-
es their clinical effectiveness. Isaac Kohane, a computer scientist and 
chair of the department of biomedical informatics at Harvard Medical 
School, puts it bluntly: “Medical records suck.” 

Yet despite the considerable drawbacks of existing EHR systems, 
most physicians agree that electronic records are a vast improvement 
over paper charts. Getting patients’ data digitized means that they are 
now accessible for analysis using the power of AI. “There’s huge poten-
tial to use artificial intelligence and machine learning to develop pre-
dictive models and better understand health outcomes,” Ratwani says. 
“I think that’s absolutely the future.”

It is already happening to some extent. In 2015 Epic began offering 
its clients machine-learning models. To develop these models, comput-
er scientists start with algorithms and train them using real-world exam-
ples with known outcomes. For example, if the goal is to predict which 
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patients are at greatest risk of developing the life-
threatening blood condition known as sepsis, which 
is caused by infection, the algorithm might incorpo-
rate data routinely collected in the intensive care unit, 
such as blood pressure, pulse and temperature. The 
better the data, the better the model will perform. 

Epic now has a library of models that its customers 
can purchase. “We have over 300 organizations either running or im-
plementing models from the library today,” says Seth Hain, director of 
analytics and machine learning at Epic. The company’s sepsis-predic-
tion model, which scans patients’ information every 15 minutes and 
monitors more than 80 variables, is one of its most popular. The North 
Oaks Health System in Hammond, La., implemented the model in 
2017. If a patient’s score reaches a certain threshold, the physicians re-
ceive a warning, which signals them to monitor the patient more 
closely and provide antibiotics if needed. Since the health system imple-
mented the model, mortality caused by sepsis has fallen by 18 percent. 

But building and implementing these kinds of models is trickier 
than it might first appear. Most rely solely on an EHR’s structured 
data—data that are collected and formatted in the same way. Those 
data might consist of a blood-pressure reading, lab results, a diagnosis 
or a drug allergy. But EHRs include a wide variety of unstructured 
data, too, such as a clinician’s notes about a visit, e-mails and  x-ray 
images. “There is information there, but it’s really hard for a comput-
er to extract it,” says Finale Doshi-Velez, a computer scientist at Har-
vard University. Ignoring this free text means losing valuable infor-
mation, such as whether the patient has improved. “There isn’t really 
a code for doing better,” she says. Moreover, Ratwani points out that 
because of poor usability, data often end up in the wrong spot. For ex-
ample, a strawberry allergy might end up documented in the clinical 
notes rather than being listed in the allergies box. In such cases, a 
model that looks for allergies only in the allergy section of the EHR 
“is built off of inaccurate data,” he adds. “That is probably one of the 
biggest challenges we’re facing right now.” 

Leo Anthony Celi, an intensive care specialist and clinical research 
director at the Massachusetts Institute of Technology’s Laboratory for 
Computational Physiology, agrees. Most of the data found in EHRs 
are not ready to be fed into an algorithm. A massive amount of cura-
tion has to occur first. For example, say you want to design an algo-
rithm to help patients in the intensive care unit avoid low blood glu-
cose, a common problem. That sounds straightforward, Celi says. 
But it turns out that blood sugar is measured in different ways, with 
blood drawn from either a finger prick or a vein. Insulin is adminis-
tered in different ways, too. When Celi and his colleagues examined 
all the data on insulin and blood sugar from patients at one hospital, 
“there were literally thousands of different ways they were entered in 
the EHR.” These data have to be manually sorted and clustered by 
type before one can even design an algorithm. “Health data is like 
crude oil,” Celi says. “It is useless unless it is refined.” 

AN INTELLIGENT FIX 
THE CURRENT PITFALLS  of EHRs hamper efforts to use artificial intel-
ligence to glean important insights, but AI might itself provide a pos-
sible solution. One of the main drawbacks of the existing EHR 

systems, doctors say, is the time it takes to document a visit—every-
thing from the patient’s complaint to the physician’s analysis and rec-
ommendation. Many physicians believe that much of the therapeutic 
value of a doctor visit is in the interactions, Kohane says. But EHRs 
have “literally taken the doctor from facing the patient to facing the 
computer.” Doctors have to type up their narrative of the visit, but they 
also enter much of the same information when they order lab tests, pre-
scribe medications and enter billing codes, says Paul Brient, chief prod-
uct officer at athenahealth, another EHR vendor. This kind of dupli-
cate work contributes to physician frustration and burnout. 

As a stopgap measure, some hospitals now have scribes sit in on 
appointments to document the visit while the physician interacts 
with the patient. But several companies are working on digital scribes, 
machine-learning algorithms that can take a conversation between a 
doctor and a patient, parse the text and use it to fill in the relevant in-
formation in the patient’s EHR. 

Indeed, some such systems are already available. In 2017 Saykara, 
a Seattle-based start-up, launched a virtual assistant named Kara. The 
iOS app uses machine learning, voice recognition and language pro-
cessing to capture conversations between patients and physicians and 
turn them into notes, diagnoses and orders in the EHR. Previous ver-
sions of the app required prompts from the physician—much like 
Apple’s Siri—but the current version can be put in “ambient mode,” 
in which it simply listens to the entire conservation and then selects 
the relevant information. EHRs turned physicians into data-entry 
clerks, Kohane says. But apps like Kara could serve as intelligent, 
knowledgeable co-workers. And Saykara is just one of a host of start-
ups developing such tools. Athenahealth’s latest mobile app allows 
physicians to dictate their documentation. The app then translates 
that text into the appropriate billing and diagnostic codes. But “it’s 
not perfect by any stretch of the imagination,” Brient says. The physi-
cian still has to check for errors. The app does reduce the workload, 
however. The systems that Robert Wachter, chair of the department 
of medicine at the University of California, San Francisco, has seen 
are “probably not quite ready for prime time,” he says, but they 
should be in a couple of years.

Artificial intelligence might also help clinicians make better, more 
sophisticated decisions. “We think of the decision support in a com-
puter system as an alert,” says Jacob Reider, a physician and CEO at 
Alliance for Better Health, a New York–based health care system that 
works to improve the health of communities. That alert might be a 
box that pops up to warn of a drug allergy. But a more sophisticated 
system might list the likelihood of a side effect with drug option A ver-
sus drug option B and provide a cost comparison. From a technologi-
cal standpoint, developing such a feature is “no different from Ama-
zon putting an advertisement or making you aware of a purchasing 
opportunity,” he says. 

“Health data is like crude oil. It is useless 
unless it is refined.” —Leo Anthony Celi,  
M.I.T. Laboratory for Computational Physiology
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A YOUNG MAN,  let’s call him Roger, arrives at the emergency department complaining of belly pain 
and nausea. A physical exam reveals that the pain is focused in the lower right portion of his abdo-
men. The doctor worries that it could be appendicitis. But by the time the imaging results come back, 
Roger is feeling better, and the scan shows that his appendix appears normal. The doctor turns to the 
computer to prescribe two medications, one for nausea and Tylenol for pain, before discharging him. 

This is one of the fictitious scenarios presented to 55 physicians 
around the country as part of a study to look at the usability of elec-
tronic health records (EHRs). To prescribe medications, a doctor has 
to locate them in the EHR system. At one hospital a simple search for 
Tylenol brings up a list of more than 80 options. Roger is a 26-year-
old man, but the list includes Tylenol for children and infants, as well 
as Tylenol for menstrual cramps. The doctor tries to winnow the list by 
typing the desired dose—500 milligrams—into the search window, 
but now she gets zero hits. So she returns to the main list and finally se-
lects the 68th option—Tylenol Extra Strength (500 mg), the most 
commonly prescribed dose of Tylenol. What should have been a sim-
ple task has taken precious minutes and far more brainpower than it 
deserved. This is just one example of the countless agonizing frustra-
tions that physicians deal with every day when they use EHRs.

These EHRs—digital versions of the paper charts in which doc-
tors used to record patients’ visits, laboratory results and other impor-
tant medical information—were supposed to transform the practice 
of medicine. The Health Information Technology for Economic and 
Clinical Health (HITECH) Act, passed in 2009, has provided $36 
billion in financial incentives to drive hospitals and clinics to transi-
tion from paper charts to EHRs. Then president Barack Obama said 
the shift would “cut waste, eliminate red tape and reduce the need to 
repeat expensive medical tests.” He added that it would “save lives by 
reducing the deadly but preventable medical errors that pervade our 
health care system.” 

When HITECH was adopted, 48  percent of physicians used 
EHRs. By 2017 that number had climbed to 85  percent, but the 
transformative power of EHRs has yet to be realized. Physicians com-
plain about clunky interfaces and time-consuming data entry. Polls 
suggest that they spend more time interacting with a patient’s file than 
with the actual patient. As a result, burnout is on the rise. Even Obama 
observed that the rollout did not go as planned. “It’s proven to be 
harder than we expected,” he told Vox in 2017.

Yet EHRs do have the potential to deliver insights and efficiencies, 
according to physicians and data scientists. Artificial intelligence in 
the form of machine learning—which allows computers to identify 
patterns in data and draw conclusions on their own—might be able to 
help overcome the obstacles encountered with EHRs and unlock their 
potential for making predictions and improving patient care. 

DIGITAL DEBACLE
IN 2016  the American Medical Association teamed up with Med Star 
Health, a health care organization that operates 10 hospitals in the Bal-
timore-Washington area, to examine the usability of two of the largest 
EHR systems, developed by Cerner, based in North Kansas City, Mo., 
and Epic, based in Verona, Wis., respectively. Together these two com-
panies account for 54 percent of the acute care hospital market. The 

team recruited emergency physicians at four hospitals and gave them 
fictitious patient data and six scenarios, including the one about Rog-
er, who presented with what seemed like appendicitis. These scenarios 
asked the physicians to perform common duties such as prescribing 
medications and ordering tests. The researchers assessed how long it 
took the physicians to complete each task, how many clicks were re-
quired and how accurately they performed. 

What they found was disheartening. The time and the number of 
clicks required varied widely from site to site and even between sites 
using the same system. And some tasks, such as tapering the dose of a 
steroid, proved exceptionally tricky across the board. Physicians had to 
manually calculate the taper doses, which took anywhere from two to 
three minutes and required 20 to 42 clicks. These design flaws were 
not benign. The physicians often made dosage mistakes. At one site 
the error rate reached 50 percent. “We’ve seen patients being harmed 
and even patients dying because of errors or issues that arise from us-
ability of the system,” says Raj Ratwani, director of MedStar Health’s 
National Center for Human Factors in Healthcare. 

But clunky interfaces are just part of the problem with EHRs. An-
other stumbling block is that information still does not flow easily be-
tween providers. The system lacks “the ability to seamlessly and auto-
matically deliver data when and where it is needed under a trusted net-
work without political, technical, or financial blocking,” according to 
a 2018 report from the National Academy of Medicine. If a patient 
changes doctors, visits urgent care or moves across the country, her re-
cords might or might not follow. “Connected care is the goal; discon-
nected care is the reality,” the authors wrote. 

In March 2018 the Harris Poll conducted an online survey on be-
half of Stanford Medicine that examined physicians’ attitudes about 
EHRs. The results were sobering. Doctors reported spending, on aver-
age, about half an hour on each patient. More than 60 percent of that 
time was spent interacting with the patient’s EHR. Half of office-
based primary care physicians think using an EHR actually diminish-
es their clinical effectiveness. Isaac Kohane, a computer scientist and 
chair of the department of biomedical informatics at Harvard Medical 
School, puts it bluntly: “Medical records suck.” 

Yet despite the considerable drawbacks of existing EHR systems, 
most physicians agree that electronic records are a vast improvement 
over paper charts. Getting patients’ data digitized means that they are 
now accessible for analysis using the power of AI. “There’s huge poten-
tial to use artificial intelligence and machine learning to develop pre-
dictive models and better understand health outcomes,” Ratwani says. 
“I think that’s absolutely the future.”

It is already happening to some extent. In 2015 Epic began offering 
its clients machine-learning models. To develop these models, comput-
er scientists start with algorithms and train them using real-world exam-
ples with known outcomes. For example, if the goal is to predict which 
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patients are at greatest risk of developing the life-
threatening blood condition known as sepsis, which 
is caused by infection, the algorithm might incorpo-
rate data routinely collected in the intensive care unit, 
such as blood pressure, pulse and temperature. The 
better the data, the better the model will perform. 

Epic now has a library of models that its customers 
can purchase. “We have over 300 organizations either running or im-
plementing models from the library today,” says Seth Hain, director of 
analytics and machine learning at Epic. The company’s sepsis-predic-
tion model, which scans patients’ information every 15 minutes and 
monitors more than 80 variables, is one of its most popular. The North 
Oaks Health System in Hammond, La., implemented the model in 
2017. If a patient’s score reaches a certain threshold, the physicians re-
ceive a warning, which signals them to monitor the patient more 
closely and provide antibiotics if needed. Since the health system imple-
mented the model, mortality caused by sepsis has fallen by 18 percent. 

But building and implementing these kinds of models is trickier 
than it might first appear. Most rely solely on an EHR’s structured 
data—data that are collected and formatted in the same way. Those 
data might consist of a blood-pressure reading, lab results, a diagnosis 
or a drug allergy. But EHRs include a wide variety of unstructured 
data, too, such as a clinician’s notes about a visit, e-mails and  x-ray 
images. “There is information there, but it’s really hard for a comput-
er to extract it,” says Finale Doshi-Velez, a computer scientist at Har-
vard University. Ignoring this free text means losing valuable infor-
mation, such as whether the patient has improved. “There isn’t really 
a code for doing better,” she says. Moreover, Ratwani points out that 
because of poor usability, data often end up in the wrong spot. For ex-
ample, a strawberry allergy might end up documented in the clinical 
notes rather than being listed in the allergies box. In such cases, a 
model that looks for allergies only in the allergy section of the EHR 
“is built off of inaccurate data,” he adds. “That is probably one of the 
biggest challenges we’re facing right now.” 

Leo Anthony Celi, an intensive care specialist and clinical research 
director at the Massachusetts Institute of Technology’s Laboratory for 
Computational Physiology, agrees. Most of the data found in EHRs 
are not ready to be fed into an algorithm. A massive amount of cura-
tion has to occur first. For example, say you want to design an algo-
rithm to help patients in the intensive care unit avoid low blood glu-
cose, a common problem. That sounds straightforward, Celi says. 
But it turns out that blood sugar is measured in different ways, with 
blood drawn from either a finger prick or a vein. Insulin is adminis-
tered in different ways, too. When Celi and his colleagues examined 
all the data on insulin and blood sugar from patients at one hospital, 
“there were literally thousands of different ways they were entered in 
the EHR.” These data have to be manually sorted and clustered by 
type before one can even design an algorithm. “Health data is like 
crude oil,” Celi says. “It is useless unless it is refined.” 

AN INTELLIGENT FIX 
THE CURRENT PITFALLS  of EHRs hamper efforts to use artificial intel-
ligence to glean important insights, but AI might itself provide a pos-
sible solution. One of the main drawbacks of the existing EHR 

systems, doctors say, is the time it takes to document a visit—every-
thing from the patient’s complaint to the physician’s analysis and rec-
ommendation. Many physicians believe that much of the therapeutic 
value of a doctor visit is in the interactions, Kohane says. But EHRs 
have “literally taken the doctor from facing the patient to facing the 
computer.” Doctors have to type up their narrative of the visit, but they 
also enter much of the same information when they order lab tests, pre-
scribe medications and enter billing codes, says Paul Brient, chief prod-
uct officer at athenahealth, another EHR vendor. This kind of dupli-
cate work contributes to physician frustration and burnout. 

As a stopgap measure, some hospitals now have scribes sit in on 
appointments to document the visit while the physician interacts 
with the patient. But several companies are working on digital scribes, 
machine-learning algorithms that can take a conversation between a 
doctor and a patient, parse the text and use it to fill in the relevant in-
formation in the patient’s EHR. 

Indeed, some such systems are already available. In 2017 Saykara, 
a Seattle-based start-up, launched a virtual assistant named Kara. The 
iOS app uses machine learning, voice recognition and language pro-
cessing to capture conversations between patients and physicians and 
turn them into notes, diagnoses and orders in the EHR. Previous ver-
sions of the app required prompts from the physician—much like 
Apple’s Siri—but the current version can be put in “ambient mode,” 
in which it simply listens to the entire conservation and then selects 
the relevant information. EHRs turned physicians into data-entry 
clerks, Kohane says. But apps like Kara could serve as intelligent, 
knowledgeable co-workers. And Saykara is just one of a host of start-
ups developing such tools. Athenahealth’s latest mobile app allows 
physicians to dictate their documentation. The app then translates 
that text into the appropriate billing and diagnostic codes. But “it’s 
not perfect by any stretch of the imagination,” Brient says. The physi-
cian still has to check for errors. The app does reduce the workload, 
however. The systems that Robert Wachter, chair of the department 
of medicine at the University of California, San Francisco, has seen 
are “probably not quite ready for prime time,” he says, but they 
should be in a couple of years.

Artificial intelligence might also help clinicians make better, more 
sophisticated decisions. “We think of the decision support in a com-
puter system as an alert,” says Jacob Reider, a physician and CEO at 
Alliance for Better Health, a New York–based health care system that 
works to improve the health of communities. That alert might be a 
box that pops up to warn of a drug allergy. But a more sophisticated 
system might list the likelihood of a side effect with drug option A ver-
sus drug option B and provide a cost comparison. From a technologi-
cal standpoint, developing such a feature is “no different from Ama-
zon putting an advertisement or making you aware of a purchasing 
opportunity,” he says. 

“Health data is like crude oil. It is useless 
unless it is refined.” —Leo Anthony Celi,  
M.I.T. Laboratory for Computational Physiology
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Wachter sees at least one encouraging sign that progress is coming. 
In the past few years the behemoths of the tech world—Google, Ama-
zon, Microsoft—have developed a strong interest in health care. 
Google, for example, partnered with researchers from U.C.S.F., Stan-
ford University and the University of Chicago to develop models 
aimed at predicting events relevant to hospitalized patients, such as 
mortality and unexpected readmission. 

To deal with the messy data problem, the researchers first trans-
lated data from two EHR systems into a standardized format called 
Fast Healthcare Interoperability Resources, or FHIR (pronounced 
“fire”). Then, rather than hand-selecting a set of variables such as 
blood pressure and heart rate, they had the model read patients’ en-
tire charts as they unfolded over time up until the point of hospital-
ization. The data unspooled into a total of 46,864,534,945 data 
points, including clinical notes. “What’s interesting about that ap-
proach is every single prediction uses the exact same data to make 
the prediction,” says Alvin Rajkomar, a physician and AI researcher 
at Google who led the effort. That element both simplifies data en-
try and enhances performance. 

But the involvement of massive corporations also raises serious pri-
vacy concerns. In mid-November 2019 the  Wall Street Journal  reported 
that Google, through a partnership with Ascension, the country’s sec-
ond-largest health care system, had gained access to the records of tens 
of millions of people without their knowledge or consent. The compa-
ny planned to use the data to develop machine-learning tools to make 
it easier for doctors to access patient data. 

This type of data sharing is not unprecedented or illegal. Tariq 
Shaukat, Google Cloud’s president of industry products and solu-
tions, wrote that the data “cannot be used for any other purpose 
than for providing these services we’re offering under the agree-
ment, and patient data cannot and will not be combined with any 
Google consumer data.” But those assurances did not stop the De-
partment of Health and Human Services from opening an inquiry 
to determine whether Google/Ascension complied with Health  
Insurance Portability and Accountability Act regulations. As of 
press time, the inquiry was ongoing. 

But privacy concerns should not halt the quest for better, smart-
er, more responsive electronic health records, according to Reider. 
There are ways to develop these systems that maintain privacy and 
security, he says. 

Ultimately real transformation of medical practice may require 
an entirely new kind of EHR, one that is not simply a digital file 
folder. All the major EHRs are built on top of database-type archi-
tecture that is 20 to 30 years old, Reider observes. “It’s rows and col-
umns of information.” He likens these systems to the software used 
to record inventory at a brick-and-mortar bookstore: “It would 
know which books it bought, and it would know which books it 
sold.” Now envision how Amazon uses algorithms to predict what a 
customer might buy tomorrow and to anticipate demand. “They’ve 
engineered their systems so that they can learn in this way, and then 
they can autonomously take action,” Reider says. Health care needs 
the same kind of transformative leap.

Cassandra Willyard  is a science writer based in Madison, Wis. 

Wiring Minds 

Successfully applying AI to biomedicine requires 
innovators trained in contrasting cultures 
By Amit Kaushal and Russ B. Altman 

From the popular press to the largest health care conferences, 
promises of artificial intelligence revo lutionizing bio med i cine 
are ubiquitous. It often seems as if we are on the cusp of AI 
systems that can remotely identify a person about to get sick, 
make a diagnosis (no doctor needed!), select a custom AI-
designed pharmaceutical and deliver it to the patient just in 
time—in an AI-powered self-driving car, of course. 

If indeed this is the future, we are far from reaching it. To 
be sure, the pace of change has been rapid. Deep learning—
the fast-growing subfield of AI that enables machines to diag-
nose pneumonia from chest x-rays or predict health de  ter  i-
oration from medical records—was unfamiliar even to most 
computer scientists a decade ago. And we do not know what 
evolutionary or revolutionary advances will drive AI in the 
coming decades. What we do know is that the success of bio-
medical AI depends not just on developing the technology but 
also on developing the people behind it.

Translating algorithmic advances to biomedical break-
throughs requires critically considering both realms of knowl-
edge and endeavor on many levels. What, for example, are the 
true capabilities of a new technology, and what is simply 
hype? What problems in biomedicine are most likely to bene-
fit from emerging computational capabilities? And how do we 
go from an interesting biomedical application of a new tech-
nology to the implementation of systems that actually improve 
human health? These challenging, multifaceted questions will 
need to be answered by interdisciplinary teams. The teams 
will require experts in AI, experts in biology and medicine, and, 
most important, leaders who can motivate and guide individu-
als with such diverse talents. 

Unlike some domains in which AI has been applied, in  
biomedicine the consequences of failure are weighty. For 
a social media company, an AI model that is ineffective at 
increasing ad clicks can be detected and rolled back the 
same day. When it comes to medicine, however, human lives 
are at stake. Inadequately informed uses of AI can lead to 
obvious harm, such as inaccurate diagnostic or therapeutic 
recommendations, but also to more insidious failures, such as 
an algorithm that gives racially biased recommendations 
because it was trained with subtly biased data. Given the 
complexities of biomedicine and the inscrutable nature of 
many AI algorithms, it might be years before such a flaw is 
uncovered. Group leaders—whether in academia, pharmaceu-
tical laboratories or start-ups—must not only understand the 
technical and scientific issues but also anticipate and articu-
late the potential risks, benefits and implications of the proj-
ects they undertake.

We need men and women who can build AI systems in med-
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icine that improve care. It is relatively easy to generate excitement 
by solving the technical aspects of a problem, but making those 
advances useful often involves wrestling with the complex inter-
play of regulatory, economic and workflow issues in health care 
systems. Successful leaders benefit from deep knowledge and 
intuition in both the AI and the biomedical domains. But we face  
a critical shortage of such versatile individuals.

Tackling this gap is crucial to ensuring the long-term suc-
cess of biomedical AI. A primary challenge is the length of study 
required in these disciplines, but a greater one is training stu-
dents in two realms that could hardly be more different in their 
approaches to problem-solving. Computer science involves the 
quantitative rigor of mathematics, statistics and engineering, 
whereas biology is underpinned by the haphazard products of 
evolution. Properties of living things are, literally and figuratively, 
organic. We seek students with the intellectual flexibility and 
passion to undergo lengthy training in both these contrasting 
cultures. Are we asking for the impossible?

These individuals do exist, and their numbers are growing. 
The first approach to their training is to identify individuals who 
already have a deep background in either biomedical or compu-
tational science and then help them become skilled in the other 
area. Graduate programs (M.S., Ph.D. and M.D./Ph.D.) in biomedi-
cal informatics have filled this role since the early 1980s. These 
programs attract diverse students and have grown to include 
disciplines that go by various names: computational biology, 
bioinformatics, clinical informatics, biomedical data science, and 
so on. All are concerned with different applications of computer 
science to biomedicine. 

But what about training students at the intersection of these 
disciplines even earlier in their careers—while their intellectual 

intuitions are still forming? The difference would 
be like that be  tween learning a second language 
as an adult and growing up in a bilingual house-
hold: fluency is second nature for early starters.

In 2001 we launched an engineering major at 
Stanford University to enable undergraduates to 
learn computer science and statistics in the con-
text of biology and medicine. The program cre-
ates graduates with a bachelor of science degree 
who have already wrestled intensively with the 
challenges of applying computational tools to 
hard problems in biomedicine. Our students take 
biology with premedical students and computer 
science with classmates who will work in Silicon 
Valley, and each completes a two- or three-quar-
ter-long research project during his or her time at 
Stanford. They acquire knowledge with breadth 
across the biomedical and technical fields and 
depth in a narrower application area. At least one 
course on the societal and ethical implications of 
tech  nology is also required. 

After almost two decades of training biomedical-computa-
tion undergraduates, we can say that the model works. Many of 
our graduates have gone on to careers in academia, clinical 
medicine, start-up companies (both in and outside of the biolo-
gy field), large companies, law firms, venture capital, and else-
where. And the major has consistently drawn a 50–50 balance 
of men and women—true for only a minority of quantitatively 
intensive engineering majors.

For most, the major has shaped their professional identity: 
they are not “AI people doing bio” or “Bio people doing AI.” 
Instead both of these intellectual traditions reside comfortably 
within their minds, each informing their understanding of the 
other. Whereas it is impossible to learn the entirety of biomedi-
cine and computer science in just four years (or even in 40), 
these people move freely between the cultures of biology and 
computer science and have already learned to apply deep tech-
nical skills to the hardest societal challenges in biology and 
human health. 

In addition to graduate programs, the development of  
a robust set of undergraduate programs at the interface  
of biomedicine and computation could give students who are  
in a formative period of their education the ability to move fluidly 
between these very different disciplines. Such programs would 
accelerate the emergence of the workforce required for appro-
priate use of AI to advance biology and health care. 

Amit Kaushal  is a clinical assistant professor of medicine and  
an adjunct professor of bioengineering at Stanford University. 

Russ B. Altman  is a professor of bioengineering, genetics, medicine 
and biomedical data science at Stanford University. 
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Wachter sees at least one encouraging sign that progress is coming. 
In the past few years the behemoths of the tech world—Google, Ama-
zon, Microsoft—have developed a strong interest in health care. 
Google, for example, partnered with researchers from U.C.S.F., Stan-
ford University and the University of Chicago to develop models 
aimed at predicting events relevant to hospitalized patients, such as 
mortality and unexpected readmission. 

To deal with the messy data problem, the researchers first trans-
lated data from two EHR systems into a standardized format called 
Fast Healthcare Interoperability Resources, or FHIR (pronounced 
“fire”). Then, rather than hand-selecting a set of variables such as 
blood pressure and heart rate, they had the model read patients’ en-
tire charts as they unfolded over time up until the point of hospital-
ization. The data unspooled into a total of 46,864,534,945 data 
points, including clinical notes. “What’s interesting about that ap-
proach is every single prediction uses the exact same data to make 
the prediction,” says Alvin Rajkomar, a physician and AI researcher 
at Google who led the effort. That element both simplifies data en-
try and enhances performance. 

But the involvement of massive corporations also raises serious pri-
vacy concerns. In mid-November 2019 the  Wall Street Journal  reported 
that Google, through a partnership with Ascension, the country’s sec-
ond-largest health care system, had gained access to the records of tens 
of millions of people without their knowledge or consent. The compa-
ny planned to use the data to develop machine-learning tools to make 
it easier for doctors to access patient data. 

This type of data sharing is not unprecedented or illegal. Tariq 
Shaukat, Google Cloud’s president of industry products and solu-
tions, wrote that the data “cannot be used for any other purpose 
than for providing these services we’re offering under the agree-
ment, and patient data cannot and will not be combined with any 
Google consumer data.” But those assurances did not stop the De-
partment of Health and Human Services from opening an inquiry 
to determine whether Google/Ascension complied with Health  
Insurance Portability and Accountability Act regulations. As of 
press time, the inquiry was ongoing. 

But privacy concerns should not halt the quest for better, smart-
er, more responsive electronic health records, according to Reider. 
There are ways to develop these systems that maintain privacy and 
security, he says. 

Ultimately real transformation of medical practice may require 
an entirely new kind of EHR, one that is not simply a digital file 
folder. All the major EHRs are built on top of database-type archi-
tecture that is 20 to 30 years old, Reider observes. “It’s rows and col-
umns of information.” He likens these systems to the software used 
to record inventory at a brick-and-mortar bookstore: “It would 
know which books it bought, and it would know which books it 
sold.” Now envision how Amazon uses algorithms to predict what a 
customer might buy tomorrow and to anticipate demand. “They’ve 
engineered their systems so that they can learn in this way, and then 
they can autonomously take action,” Reider says. Health care needs 
the same kind of transformative leap.

Cassandra Willyard  is a science writer based in Madison, Wis. 
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From the popular press to the largest health care conferences, 
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are ubiquitous. It often seems as if we are on the cusp of AI 
systems that can remotely identify a person about to get sick, 
make a diagnosis (no doctor needed!), select a custom AI-
designed pharmaceutical and deliver it to the patient just in 
time—in an AI-powered self-driving car, of course. 

If indeed this is the future, we are far from reaching it. To 
be sure, the pace of change has been rapid. Deep learning—
the fast-growing subfield of AI that enables machines to diag-
nose pneumonia from chest x-rays or predict health de  ter  i-
oration from medical records—was unfamiliar even to most 
computer scientists a decade ago. And we do not know what 
evolutionary or revolutionary advances will drive AI in the 
coming decades. What we do know is that the success of bio-
medical AI depends not just on developing the technology but 
also on developing the people behind it.

Translating algorithmic advances to biomedical break-
throughs requires critically considering both realms of knowl-
edge and endeavor on many levels. What, for example, are the 
true capabilities of a new technology, and what is simply 
hype? What problems in biomedicine are most likely to bene-
fit from emerging computational capabilities? And how do we 
go from an interesting biomedical application of a new tech-
nology to the implementation of systems that actually improve 
human health? These challenging, multifaceted questions will 
need to be answered by interdisciplinary teams. The teams 
will require experts in AI, experts in biology and medicine, and, 
most important, leaders who can motivate and guide individu-
als with such diverse talents. 

Unlike some domains in which AI has been applied, in  
biomedicine the consequences of failure are weighty. For 
a social media company, an AI model that is ineffective at 
increasing ad clicks can be detected and rolled back the 
same day. When it comes to medicine, however, human lives 
are at stake. Inadequately informed uses of AI can lead to 
obvious harm, such as inaccurate diagnostic or therapeutic 
recommendations, but also to more insidious failures, such as 
an algorithm that gives racially biased recommendations 
because it was trained with subtly biased data. Given the 
complexities of biomedicine and the inscrutable nature of 
many AI algorithms, it might be years before such a flaw is 
uncovered. Group leaders—whether in academia, pharmaceu-
tical laboratories or start-ups—must not only understand the 
technical and scientific issues but also anticipate and articu-
late the potential risks, benefits and implications of the proj-
ects they undertake.

We need men and women who can build AI systems in med-
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icine that improve care. It is relatively easy to generate excitement 
by solving the technical aspects of a problem, but making those 
advances useful often involves wrestling with the complex inter-
play of regulatory, economic and workflow issues in health care 
systems. Successful leaders benefit from deep knowledge and 
intuition in both the AI and the biomedical domains. But we face  
a critical shortage of such versatile individuals.

Tackling this gap is crucial to ensuring the long-term suc-
cess of biomedical AI. A primary challenge is the length of study 
required in these disciplines, but a greater one is training stu-
dents in two realms that could hardly be more different in their 
approaches to problem-solving. Computer science involves the 
quantitative rigor of mathematics, statistics and engineering, 
whereas biology is underpinned by the haphazard products of 
evolution. Properties of living things are, literally and figuratively, 
organic. We seek students with the intellectual flexibility and 
passion to undergo lengthy training in both these contrasting 
cultures. Are we asking for the impossible?

These individuals do exist, and their numbers are growing. 
The first approach to their training is to identify individuals who 
already have a deep background in either biomedical or compu-
tational science and then help them become skilled in the other 
area. Graduate programs (M.S., Ph.D. and M.D./Ph.D.) in biomedi-
cal informatics have filled this role since the early 1980s. These 
programs attract diverse students and have grown to include 
disciplines that go by various names: computational biology, 
bioinformatics, clinical informatics, biomedical data science, and 
so on. All are concerned with different applications of computer 
science to biomedicine. 

But what about training students at the intersection of these 
disciplines even earlier in their careers—while their intellectual 

intuitions are still forming? The difference would 
be like that be  tween learning a second language 
as an adult and growing up in a bilingual house-
hold: fluency is second nature for early starters.

In 2001 we launched an engineering major at 
Stanford University to enable undergraduates to 
learn computer science and statistics in the con-
text of biology and medicine. The program cre-
ates graduates with a bachelor of science degree 
who have already wrestled intensively with the 
challenges of applying computational tools to 
hard problems in biomedicine. Our students take 
biology with premedical students and computer 
science with classmates who will work in Silicon 
Valley, and each completes a two- or three-quar-
ter-long research project during his or her time at 
Stanford. They acquire knowledge with breadth 
across the biomedical and technical fields and 
depth in a narrower application area. At least one 
course on the societal and ethical implications of 
tech  nology is also required. 

After almost two decades of training biomedical-computa-
tion undergraduates, we can say that the model works. Many of 
our graduates have gone on to careers in academia, clinical 
medicine, start-up companies (both in and outside of the biolo-
gy field), large companies, law firms, venture capital, and else-
where. And the major has consistently drawn a 50–50 balance 
of men and women—true for only a minority of quantitatively 
intensive engineering majors.

For most, the major has shaped their professional identity: 
they are not “AI people doing bio” or “Bio people doing AI.” 
Instead both of these intellectual traditions reside comfortably 
within their minds, each informing their understanding of the 
other. Whereas it is impossible to learn the entirety of biomedi-
cine and computer science in just four years (or even in 40), 
these people move freely between the cultures of biology and 
computer science and have already learned to apply deep tech-
nical skills to the hardest societal challenges in biology and 
human health. 

In addition to graduate programs, the development of  
a robust set of undergraduate programs at the interface  
of biomedicine and computation could give students who are  
in a formative period of their education the ability to move fluidly 
between these very different disciplines. Such programs would 
accelerate the emergence of the workforce required for appro-
priate use of AI to advance biology and health care. 

Amit Kaushal  is a clinical assistant professor of medicine and  
an adjunct professor of bioengineering at Stanford University. 

Russ B. Altman  is a professor of bioengineering, genetics, medicine 
and biomedical data science at Stanford University. 
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Rufus Porter’s 
Curious World:  Art and 
Invention in America, 1815–1860 
Edited by Laura Fecych Sprague and 
Justin Wolff. Pennsylvania State University 
Press, 2019 ($39.95). Exhibit: 12/12/19 to 
5/31/20, Bowdoin College Museum of Art  

In his obituary  in 
this magazine,  
published on Sep-
tember 6, 1884, Rufus 
Porter is described 
as a “remarkable 

natural genius” who had a peculiar ten-
dency to move quickly from one occupa-
tion and place to another. “Although he 
might be doing well at the business which 
for the time engaged his attention, he 
would sell out and abandon it the moment 
a new idea came into his mind,” the writer 
remarked. “His brain was an overflowing 
fountain of new ideas and active projects.”

Porter was a prolific inventor and is 
credited with dozens of inventions, includ-
ing a flying ship, a portable camera obscura, 
a rotary plow, and more. He left many of his 
projects unfinished—this happened with  
a revolving almanac he was perfecting in 
1823, when he quickly changed gears to 

1.  Plumb and level indicator, circa 1846, New York, N.Y.; 
hand-colored engraving, metal pointer, wood frame.  
By Rufus Porter, 1792–1884, designer; and  
unidentified engraver. 

2.  Rufus Porter, circa 1872; photographic print by an 
unidentified photographer. 

3.  Revolving almanack, circa 1841; framed engraving by  
Samuel Maverick (1789–1845), engraver, after Rufus Porter.

4.  The first and other early issues of  Scientific American, 
 established in 1845. 

work on a new kind of boat intended to tra-
verse the Connecticut River. He made his 
primary living as an artist, painting portraits, 
landscapes and architecture. 

In 1845 he published the first issue of 
�Scientific�American,��which he ran for less 
than a year before moving on to his next 
occupation. Thankfully, this endeavor en ­
dured well beyond his lifetime. The image of 
our first issue is in this new collection of Por-
ter’s works and part of an exhibition along-
side many of his portraits and illustrations of 
his inventions, housed at the Bowdoin Col-
lege Museum of Art in Brunswick, Maine. 
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Naomi Oreskes  is a professor of the history of science  
at Harvard University. She is author of  Why Trust Science? 
 (Princeton University Press, 2019) and co-author  
of  Discerning Experts  (University of Chicago, 2019).

OBSERVATORY
KEEPING AN EYE ON SCIENCE

Last October  the Physicians Committee for Responsible Medi-
cine, a nonprofit with 12,000 doctor members, asked Philadelphia’s 
Office of the District Attorney to launch a reckless-endangerment 
in  vestigation. The trigger for this extraordinary request was not a 
new attempt by the tobacco industry to sell cigarettes to children 
or by the petroleum industry to reintroduce lead into gasoline. It 
was a set of papers and proposed dietary guidelines, published in 
the  Annals of Internal Medicine,  suggesting it’s fine for Americans 
to continue eating a diet rich in red and processed meats. 

The guidelines set off a media frenzy, with dramatic headlines 
suggesting that conventional nutritional wisdom had been over-
turned. This re  sponse produced a counterreaction, with various 
experts and public health organizations slamming the guidelines. 
Walter Willett, a Harvard professor of epidemiology and nutri-
tion, called them “the most egregious abuse of data I’ve ever seen.”

Critics pointed out numerous flaws with the Annals publica-
tions. Most conspicuously, the authors had used a review meth-
odology that valorizes randomized clinical trials (RCTs). But it is 
famously difficult to do RCTs for nutrition, so by choosing this 

particular assessment tool, the investigators excluded most of the 
benchmark studies on red meat and health. And we soon learned 
that some of them had undisclosed ties to the food industry. In 
particular, the lead author was senior author on a similar study 
in 2016 that challenged the advice to eat less sugar. That paper, 
which also appeared in the  Annals of Internal Medicine,  was paid 
for by the International Life Sciences Institute, an industry group 
founded by a Coca-Cola executive and notorious for its repeated 
attempts to challenge international health guidelines.

More to the point, the “red meat is fine” message flies in the 
face of a large and well-established body of evidence from epide-
miological cohort studies, randomized trials with established risk 
factors as outcomes and animal studies. People (and lab animals) 
whose diets are high in red and processed meats are more likely 
to suffer and die from type  2 diabetes, cardiovascular disease, 
respiratory ailments, neurodegenerative diseases and cancer 
than those whose diets are less meat-laden. One study of tens of 
thousands of men and women followed for an average of 26 years 
showed that every extra daily serving of red meat was associated 
with a 13 percent higher risk of death from all causes. Eating pro-
cessed red meat increased that number to 20 percent. Given what 
the literature has shown about meat, more than a dozen experts 
asked the  Annals  to retract the papers. Some suggested they 
should never have been published in the first place.

If science is to be open to new evidence and ideas, sometimes 
bad or even reckless studies will be published. But the  Annals  did 
two troubling things. First, it did not just publish a set of research 
papers on nutrition; it published a set of  guidelines . Moreover, the 
authors said, “We suggest continuing current unprocessed red 
meat consumption (weak recommendation, low-certainty evi-
dence). . . .  [And] we suggest continuing current processed meat 
consumption (weak recommendation, low-certainty evidence).”

This is astonishing: a group of scientists, critiquing existing 
nutritional studies for their (alleged) lack of methodological rig-
or, offered radically contrary and potentially dangerous guidance 
based on low-certainty evidence! Further, the  Annals  did not 
simply  publish  the guidelines. It  promoted  them with an accom-
panying editorial and a press package that began with an un -
qualified headline—“No need to reduce red or processed meat 
consumption for good health”—and ended with a statement that, 
within 24 hours, had been credibly challenged: “Those that seek 
to dispute the . . .  findings will be hard-pressed finding appropri-
ate evidence with which to build an argument.”

We live in a world where industries exaggerate scientific uncer-
tainty and promote outlier views as a means to defend dangerous 
products and activities. In this context, it behooves journals to 
exercise caution when publishing controversial findings and not 
to take sides. There is enough sound and fury in the popular press 
to confuse us all. The last thing we need is for scientific journals 
to contribute to the cacophony. 

Illustration by Glenn Harvey
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Let Them  
Eat Meat? 
When journals behave irresponsibly, 
it can cause real harm 
By Naomi Oreskes 
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ANTI GRAVITY
THE ONGOING SEARCH FOR  

FUNDAMENTAL FARCES
Steve Mirsky  has been writing the Anti Gravity column since 
a typical tectonic plate was about 36 inches from its current location. 
He also hosts the  Scientific American  podcast Science Talk. 

For many years  we’ve been hearing about a so-called 
War on Christmas. And for centuries we’ve heard 
that the meek shall in  her it the earth. But what we 
haven’t heard a lot about is that for decades Christ-
mas has been waging a war on the meek. I’m talking, 
of course, about decorative lights and insects. 

Outdoor lighting in general poses a deadly threat 
to insects. That’s according to a study published 
online in November 2019 in the journal  Biological 
Conservation,  entitled “Light Pollution Is a Driver of 
In  sect Declines.” 

The article notes that steep drops in insect num-
bers around the world have happened over the past 
couple of decades in what amounts to an “insect 
apocalypse.” The blame is usually assigned to “hab-
itat loss, chemical pollution (especially pesticide 
use), invasive species, and climate change.” But the 
authors contend that the forces of lightness have not gotten 
their due. And they cite what they call “diurnal bias.” 

The allegorically intoxicated man famously searches for his 
lost wallet under the streetlight where he can see better. Con-
versely, so may exist “a preference among ecologists for studying 
daytime phenomena”—diurnal bias. When would you rather 
count bugs, after a nice breakfast or four hours before breakfast 
when you can barely see your hand in front of your bleary eyes? 

The research team thus asserts that a preference for sleeping 
at night “has led insect conservationists to overlook another 
widespread habitat disturbance, pollutant, and method of in-
sect control: artificial light at night (ALAN).” 

ALAN’s iniquitous influence occurs “through its interference 
with the development, movement, foraging, and reproductive 
success of diverse insect species.” Another factor is light’s “posi-
tive effect on insectivore predation.” That is, birds, bats, amphib-
ians and arachnids aren’t stupid—if a lot of insects start swirling 
around lights in the night, predators will also show up. The re-
sult is a big buggy banquet of hefty hexapodal helpings that pre-
cipitates a plum  meting in part of the Pancrustacea population. 

Sadly, ALAN spikes sharply after Thanksgiving, as many peo-
ple add festive illumination to the exterior of their houses to cel-
ebrate the approach of Christmas. As you read these words in 
early 2020, stubbornly bedecked houses may still be sucking 
electricity out of the grid at unusually high rates. 

Many neighborhoods, mine included, have a particular house 
that embraces the spirit of the season in such an outsized way as 
to produce a radiant haze perhaps visible to exoplanet hunters 
in other star systems. (For an example, search online using the 

term “Griswold electricity meters.”) The massive carnage to 
insects is accompanied by lines of slow-moving cars belching 
noxious gases in front of the home, just to catch a glimpse of the 
outward manifestation of the family’s deep-rooted obsession. 

The task then must be to lessen “the ecological consequenc-
es of ALAN on insects while still maintaining sufficient levels of 
nighttime illumination for human safety and enjoyment,” the 
researchers write. Fortunately, their study offers some solutions 
to this existential pestilential crisis. 

The first is of the category in which one both possesses a pas-
try and partakes of it as well: “Monochromatic LEDs can be 
engineered to produce light of any desired spectral composi-
tion,” the investigators write. “Therefore, once we know the spe-
cific wavelength affinities of insects, we can in theory design 
lights with minimal output in the wavelengths that most affect 
insect fitness.” 

The second is astonishingly ingenious: turn some of the 
lights off. (One must wonder if a paradoxical and figurative 
lightbulb came on above the scientists’ heads when they came 
up with the idea of turning the lights off.) “In many cases,” they 
write, “it is far easier, quicker, and cheaper to shield, dim, or 
turn off a light source than it is to find the particular bulb type 
or narrow bandpass filter that makes its emissions visible to 
humans alone.” Help end the war on insects. It is better to blow 
out one candle than to curse the planet. 

 Light Blight
 Too much illumination  
is killing vital insects
By Steve Mirsky
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50, 100 & 150 YEARS AGO 
INNOVATION AND DISCOVERY AS CHRONICLED IN Scientific AmericAn

Compiled by Daniel C. Schlenoff
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1970 Era of 
Microelectronics 

“Since the introduction of the tran-
sistor in 1948—which in its day 
seemed a marvel of compactness 
compared with the glass vacuum 
tube—the size of electronic devices 
has been reduced by a factor of 10 
roughly every five years. A great 
part of the stimulus for miniaturiz-
ing electronic circuits came from 
ballistic-missile programs. As the 
microtechnology was developed, 
however, it was speedily applied to 
commercial computers. It now 
seems inevitable that microelec-
tronic circuits will soon find their 
way into a variety of new applica-
tions whose impact on everyday 
life—in the home, in the office, in 
the school and on the highway—
will be profound.” 

1920 First Rocket Man
“Dr. Robert H. God-

dard of Clark University, in an 
account of apparatus invented by 
him for the purpose of exploring 
the extreme upper strata of the 
atmos phere, mentioned casually 
the possibility of giving this appa-
ratus sufficient driving power to 
carry it to the distance of the 

moon. In confor-
mance with the 
purposes which 
impelled him to 
make this investi-
gation, Dr. God-
dard, the first 
time he sends this 
little messenger 
aloft, will recover 
data of much 
meteorological 
value. But he will 
not shoot at the 
moon—somebody 
else will have to 
do that for now.”

Ice for Cooling
“In order to expe-
dite the harvesting of natural ice, 
there has been introduced a gaso-
line-driven saw of the type shown. 
This saw consists of an automo-
bile-type power plant and a circu-
lar saw. The saw is pushed along, 
the operator behind furnishing the 
motive power. The portable saw 
cuts the ice into 20-foot squares. 
These squares are guided through 
the water to a gang of four circular 
saws, which cuts them into the 
regulation sized cakes.”   

1870 Diving Engineers
“No operation in sub-

marine engineering is more impor-
tant or attended with greater per-
sonal risk than diving. This art has, 
however, been so far advanced, and 
apparatus for diving has been so far 
perfected, that divers now descend 
to depths of over one hundred feet. 
There are about thirty professional 
divers in the United States, and the 
annual mortality has been on the 
average about four of this number.”

1870

1920

1970

Comfortably Cold
A comment from an 1848 issue still holds true: “Down to the present 
era . . .  mankind has been incessantly in quest of refrigeratives.” In 

the 19th century ice harvested during winter months kept food fresher at home 
and during shipping. Artificial cold, first demonstrated in 1756, remained complex 
and sometimes dangerous and was limited until the 20th century. By 1909 the 
average diet of “rural and urban, rich and poor, has undergone a great change in 
conse quence of the practical application of cold.” After 1928 the wonder chemical 
freon (not so wonderful: banned and replaced in 1987) allowed workable home 
refriger ators to displace the “icebox.” Cold also helped manu fact uring efficiency 
and human comfort. In a 1933 article Willis Carrier (you’re probably familiar 
with his company) lauded “our new command of the conditions of the air which 
surrounds us.” Cooling (or, in February, heating!) the air around us requires energy 
and increases carbon emissions. But improved technology will help decrease 
energy use and reduce the amount of food grown and thrown away worldwide.

Stacked blocks of ice onboard a steamship cool a cargo of fresh meat 
from New York to Liverpool, 1877.
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Ingredients

Nutrition
(percent of recommended daily intake) 

Calories

Water
Cooked black beans
Expeller pressed canola oil
Cooked brown rice
Roasted yellow corn
Onion
Tomato paste
Soy protein concentrate
Roasted red and green peppers
Organic cane sugar
Potato starch
Modified vegetable gum
Sea salt
Yeast extract
Onion powder
Spices
Garlic powder
Paprika
Black bean powder
Natural flavors
Tomato powder
Citric acid
Lactic acid
Instant coffee
Molasses

Water
Soy protein concentrate
Canola oil
Vital wheat gluten
Onions
Soy protein isolate
Methylcellulose
Yeast extract
Malt extract
Onion powder
Garlic powder
Organic ancient grain flour
Dried garlic
Organic distilled vinegar
Natural flavors
Cane sugar
Potato starch
Sea salt
Salt
Celery seed
Organic cane sugar
Smoke flavor
Spice extractives
Spices
Pea protein

Water
Soy protein concentrate
Coconut oil
Sunflower oil
Natural flavors
Potato protein
Methylcellulose
Yeast extract
Cultured dextrose
Food starch modified
Soy leghemoglobin
Salt
Soy protein isolate

Grass-fed beef

Fat
Saturated Fat

Cholesterol
Sodium

Carbohydrates
Dietary Fiber

Protein
Vitamin A

Calcium
Iron

Vitamin C

34
25
0

19
2

12
32
0
2

25
90

18
40

0
16
3

11
31
0

15
25
0

13
0
0

24
7

19
8
7
5
9
9

26
35
25

3
0
0

42
0
0

15
0

290 240 188 186 240

11
0
0

19
4

16
27
0
8

20
0

Pea protein isolate
Expeller pressed canola oil
Refined coconut oil
Water
Yeast extract
Maltodextrin
Natural flavors
Gum arabic
Sunflower oil
Salt
Succinic acid
Acetic acid
Non-GMO food starch
Cellulose from bamboo
Methylcellulose
Potato starch
Beet juice extract
Ascorbic acid
Annatto extract
Citrus fruit extract
Vegetable glycerin
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Text by Mark Fischetti | Graphic by MSJONESNYC

Meat the Imitators 
What’s in that burger you’re eating? 

Meatless patties  such as the Impossible Burger and Beyond 
Burger are catching on quickly. But what are they made of? 
And how do they compare nutritionally with actual meat and 
the classic veggie and black bean alternatives? We compare the 
information on five product labels here. Beyond Burger’s  
protein comes from ground peas, Impossible’s from soy and 

potato; fats are from various oils. How producers create a 
savory “umami” taste is a kitchen secret. Some consumers 
choose meat less offerings to reduce their beef intake for person-
al or environmental reasons, and some people simply prefer 
the vegan varieties. But whether any choice is “healthier” is 
debatable; see the facts.

Beef is higher  
in cholesterol 
than veggie 
alternatives,  
but the veggie 
burgers are 
higher in sodium.

To mimic the texture and 
look of beef, Impossible 
uses soy leghemoglobin,  
a compound extracted 
from soy bean roots that  
is structurally similar to 
the hemoglobin in animals. 

All values for a four-ounce 
(113-gram) serving. 

Methylcellulose 
is an indigestible 
thickener. 

Water and oils 
rank high in  
non-beef patties. 

Nutrition can vary slightly  
from package to package  
within a given brand.

© 2020 Scientific American
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